DIRECTORATE OF SCHOOL EDUCATION TAMILNADU

12JPCM04	JEE PRACTICE QUESTIONS	Class : XII
$(2023-24)$	(TEST-4)	Time : 1.15 hrs
Total Marks : 180		

Answer key

12th - MATHS

31.Ans: C

$$
\begin{aligned}
& x^{2}+y^{2}-5 x-y+5=0 \\
& \left(x-\frac{5}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}=\frac{3}{2} \\
& Q=\left(\frac{5}{2}+\sqrt{\frac{3}{2}} \cos \theta, \frac{1}{2},+\sqrt{\frac{3}{2}} \sin \theta\right)^{2}
\end{aligned}
$$

$$
P(0,-2)
$$

$P Q^{2}=\left(\frac{5}{2}+\sqrt{\frac{3}{2}} \cos \theta\right)^{2}+\left(\frac{5}{2}+\sqrt{\frac{3}{2}} \sin \theta\right)^{2}$
$=14+5 \sqrt{\frac{3}{2}}(\cos \theta+\sin \theta)$
32.Ans: A

$$
x^{2}+y^{2}=9
$$

Let line though P, A and B make angle θ with x - axis equation of line

$$
\frac{x-4}{\cos \theta}=\frac{y-7}{\sin \theta}=K
$$

Any point $=(K \cos \theta+4, K \sin \theta+7)$

$$
\begin{aligned}
& x^{2}+y^{2}=9 \\
& (K \cos \theta+4)^{2}+(K \sin \theta+7)^{2}=9 \\
& K^{2}+K(8 \cos \theta+14 \sin \theta)+65-9=0 \\
& K^{2}+K(8 \cos \theta+14 \sin \theta)+56=0 \\
& \text { Which is quadratic in } K
\end{aligned}
$$

$$
P A \cdot P B=S_{3}=\frac{56}{1}=56
$$

33.Ans: B
$x^{2}+y^{2}-4 x+6 y-12=0$
$(x-2)^{2}+(y+3)^{2}=5^{2}$
Distance between $(2,-3)$ and $(-3,2)=5 \sqrt{2}$
Radius of $S=\sqrt{25+50}$

$$
=\sqrt{75}
$$

$$
S=5 \sqrt{3}
$$

34.Ans : B

The equation of circle touching x axis at $(3,0)$ is

$$
(x-3)^{2}+y^{2}+\lambda y=0
$$

It passes though $(1,-2)$

$$
\begin{gathered}
(-2)^{2}+4+\lambda(-2)=0 \\
4+4=2 \lambda \\
\lambda=4
\end{gathered}
$$

The equation of circle is $(x-3)^{2}+y^{2}+4 y=0$ clearly $(5,-2)$ satisfies the equation
Answer $=(5,-2)$
35.Ans: D

According to the figure

$$
\begin{gathered}
(1+y)^{2}=(1-y)^{2}+1(y>0) \\
y=\frac{1}{4}
\end{gathered}
$$

36.Ans: B

Point of intersection of lines $x-y=1$ and $2 x+y=3$ is $\left(\frac{4}{3}, \frac{1}{3}\right)$
slope of $O P \frac{\frac{1}{3}+1}{\frac{4}{3}-1}=\frac{\frac{4}{3}}{\frac{1}{3}}=4$
Slope of tangents $=-\frac{1}{4}$

Equation of tangent $y+1=\frac{1}{4}(x-1)(1,-1)$

$$
\begin{aligned}
& 4 y+4=-x-1 \\
& x+4 y+3=0
\end{aligned}
$$

37.Ans: B Let the required circle be

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

Since it passes through $(0,0)$ and $(1,0)$

$$
\Rightarrow C=0 \quad \text { and } g=-\frac{1}{2}
$$

Points $(0,0)$ and $(1,0)$ lie inside the circle $x^{2}+y^{2}=9$, so two circles touch internally

$$
\begin{aligned}
& \Rightarrow c_{1} c_{2}=r_{1}-r_{2} \\
& \sqrt{g^{2}+f^{2}}=3-\sqrt{g^{2}+f^{2}} \Rightarrow \sqrt{g^{2}+f^{2}}=\frac{3}{2} \\
& \Rightarrow f^{2}=\frac{9}{4}-\frac{1}{4}=2 \\
& f= \pm \sqrt{2}
\end{aligned}
$$

Hence the centres of required circle are

$$
\left(\frac{1}{2}, \sqrt{2}\right) \text { or }\left(\frac{1}{2},-\sqrt{2}\right)
$$

38.Ans: A

Intersection of given lines is the centre of the circle i.e. $(1,-1)$
Circumference $=10 \pi$
\Rightarrow radius $r=5$
\Rightarrow equation of circle is $x^{2}+y^{2}-2 x+2 y-23=0$
39.Ans: B

$$
\begin{aligned}
& \frac{b}{a}=\frac{n \operatorname{Pr}}{n \operatorname{Pr}-1}=n-r+1 \\
& \frac{c}{b}=\frac{n \operatorname{Pr}+1}{n \operatorname{Pr}}=n-r \\
& \therefore \frac{b}{a}=\frac{c}{b}+1=\frac{b+c}{b} \\
& b^{2}=a(b+c) \\
& \frac{b^{2}}{a(b+c)}=1
\end{aligned}
$$

$$
\therefore \frac{b^{2}}{a(b+c)}+2=1+2=3
$$

40.Ans : C

4	3	5	1	2
T	O	U	G	H
3	2	2	0	0
$4!$	$3!$	$2!$	$1!$	$0!$

$$
\text { Rank }=3(4!)+2(3!)+2(2!)+0(1!)+0(0!)+1=89
$$

$$
M=89
$$

$$
\begin{array}{lll}
1 & 1 & 2
\end{array}
$$

$$
\begin{array}{lll}
\mathrm{I} & \mathrm{I} & \mathrm{~T}
\end{array}
$$

$\frac{0}{2!} \quad \frac{0}{1!} \quad \frac{0}{1!}$
2! 1! 0 !

Rank $=\frac{0}{2!}(2!)+\frac{0}{1!}(1!)+\frac{0}{1!}(0!)+1=1$
$\therefore n=1$
$\mathrm{m}+\mathrm{n}+10=89+1+10=100$
41.Ans : A

The sum of the digits in the unit places of all number formed $=$ (sum of digits) $(n-1)$!

$$
\begin{aligned}
& =(2+3+4=5)(4-1)! \\
& =(14) 3!=6 \times 14=84
\end{aligned}
$$

42.Sum of the total numbers which can be formed with given n - differ digits

$$
\begin{aligned}
& =(\mathrm{n}-1)!(\text { sum of digits })\left(\frac{10^{n}{ }_{-1}}{9}\right) \\
& =(3!)(1+2+3+4)\left(\frac{10^{4}-1}{9}\right) \\
& =6(10)(1111) \\
& =66660
\end{aligned}
$$

43.Ans: D

$$
4 P_{2} \times 6 P_{3}=1440
$$

44.Ans: B
$26 \times 25 \times 10 \times 9 \times 8 \times 7$

$$
=3,276,000
$$

45.Ans: A

Four digit not which start from 6, 7, 8 $3 \times 4 \times 3 \times 2=72$
5 digit. No $=5!=120$
Total on of Integns $=192$

DIRECTORATE OF SCHOOL EDUCATION TAMILNADU

11JPCM04
(2023-24)

JEE PRACTICE QUESTIONS
(TEST-4)

Class: XI
Time : 1.15 hrs
Total Marks : 180

Answer key

$$
\text { 11 }{ }^{\text {th }}-\text { MATHS }
$$

31.Ans: B

$$
\begin{aligned}
& \frac{b}{a}=\frac{n \operatorname{Pr}}{n \operatorname{Pr}-1}=n-r+1 \\
& \frac{c}{b}=\frac{n \operatorname{Pr}+1}{n \operatorname{Pr}}=n-r \\
& \therefore \frac{b}{a}=\frac{c}{b}+1=\frac{b+c}{b} \\
& b^{2}=a(b+c) \\
& \frac{b^{2}}{a(b+c)}=1 \\
& \therefore \frac{b^{2}}{a(b+c)}+2=1+2=3
\end{aligned}
$$

32.Ans: C

4	3	5	1	2
T	O	U	G	H
3	2	2	0	0
$4!$	$3!$	$2!$	$1!$	$0!$

$$
\text { Rank }=3(4!)+2(3!)+2(2!)+0(1!)+0(0!)+1=89
$$

$$
M=89
$$

$$
\begin{array}{lll}
1 & 1 & 2
\end{array}
$$

$$
\begin{array}{lll}
\mathrm{I} & \mathrm{I} & \mathrm{~T}
\end{array}
$$

$$
\frac{0}{2!} \quad \frac{0}{1!} \quad \frac{0}{1!}
$$

$$
2!\quad 1!\quad 0!
$$

Rank $=\frac{0}{2!}(2!)+\frac{0}{1!}(1!)+\frac{0}{1!}(0!)+1=1$

$$
\therefore n=1
$$

$$
\mathrm{m}+\mathrm{n}+10=89+1+10=100
$$

33.Ans: A

The sum of the digits in the unit places of all number formed $=($ sum of digits) ($n-1$)!

$$
\begin{aligned}
& =(2+3+4=5)(4-1)^{!} \\
& =(14) 3!=6 \times 14=84
\end{aligned}
$$

34.Sum of the total numbers which can be formed with given n - differ digits

$$
\begin{aligned}
& =(\mathrm{n}-1)!(\text { sum of digits })\left(\frac{10_{-1}^{n}}{9}\right) \\
& =(3!)(1+2+3+4)\left(\frac{10_{-1}^{4}}{9}\right) \\
& =6(10)(1111) \\
& =66660
\end{aligned}
$$

35.Ans: D

$$
4 P_{2} \times 6 P_{3}=1440
$$

36.Ans: B

$$
\begin{array}{r}
26 \times 25 \times 10 \times 9 \times 8 \times 7 \\
=3,276,000
\end{array}
$$

37.Ans: A

Four digit not which start from 6, 7, 8

$$
\begin{aligned}
& 3 \times 4 \times 3 \times 2=72 \\
& 5 \text { digit. No }=5!=120 \\
& \text { Total on of Integns }=192
\end{aligned}
$$

38.Ans: C

$$
\begin{aligned}
& 3_{2}^{8} 2 \\
& \frac{8!}{3!3!2!}(3!)=1680
\end{aligned}
$$

39.Ans : C Each player will ser 13 cards

The no. of ways of distributions 52 cards giving 13 cards to each player

$$
\begin{aligned}
& =(52(13)) \times(39(13)) \times(26(13)) \times(13(13)) \\
& =\frac{(52)!}{[(13)!]^{4}}
\end{aligned}
$$

40.Ans C

A 5 digit number divisible by 3 in K be formed using the no $0,1,2,3,4$ and 5 without repetition, the total no. of ways

$$
{ }^{5} P_{5}+{ }^{5} P_{5}-{ }^{4} P_{4}=216
$$

Sum of digits $=0+1+2+3+4+5=15$
To form a 5 digit number divisible by 3, we must Loewe either 0 (or) 3
When 0 is left out, the nos are 5P5
When 3 is left out, the nos are 5P5-4P4
Also 0 con nor be used at extreme left
Reqd n . of ways $={ }^{5} \mathrm{P}_{5}+{ }^{5} \mathrm{P}_{5}-{ }^{4} \mathrm{P}_{4}$

$$
\begin{aligned}
& =120+120-24 \\
& =240-24 \\
& =216
\end{aligned}
$$

41.Ans: C

$$
\begin{aligned}
x_{n}=\frac{195}{4\left(^{n} p_{n}\right)}- & \frac{n+3 P_{3}}{n+1 P_{n+1}} \\
& \frac{195}{4 n!}-\frac{(n+3)(n+2)(n+1)}{(n+1)!} \\
& \frac{195}{4 n!}-\frac{(n+3)(n+2)}{n!} \\
& X_{\mathrm{n}} \text { is }+\mathrm{ve} \\
& \therefore \frac{171-4 n^{2}-20 n}{4 n!}>0 \\
& 4 \mathrm{n}^{2}+20 \mathrm{n}-171>0 \\
& \text { Which is true } \mathrm{n}=1,2,3,4
\end{aligned}
$$

Hence the given sequence has $4+$ ve terms
42.Ans: C

Since the unit digit of a factorial more than 4 is zero, so the unit digit of the given expression

$$
\begin{aligned}
& =1!+2!+3!+4!+\ldots \ldots \ldots+(10)! \\
& =\text { Unit digit of } 1!+2!+3!+4! \\
& =\text { Unit digit of }(1+2+6+24) \\
& =\text { unit digit of } 33 \\
& =3
\end{aligned}
$$

43.Ans : A

Since $x+y+z=25$, so the possible, values of $x y z=9$,
9,7 and $9,8,8$. Hence,
The required sum

$$
\begin{aligned}
& =3 \times 9!\times 9!\times 7!+3 \times 9!\times 8!\times 8! \\
& =3 \times 9!\times 9 \times 8!\times 7!+3 \times 9!\times 8!\times 8 \times 7! \\
& =3 \times 9!\times 8!\times 7!(9+8) \\
& =3 \times(9+8) \times 9!\times 8!\times 7! \\
& =5!\times 9!\times 8!\times 7!
\end{aligned}
$$

44.Ans: C

There are 3 vowels ($\mathrm{A}, \mathrm{I}, \mathrm{O}$) and 5 consonants ($\mathrm{F}, \mathrm{R}, \mathrm{C}, \mathrm{T}, \mathrm{N}$) Thus, There are 6 gaps in between 5 consonants
Here, we place 3 vowels in between 6 gaps in ${ }^{6} P_{3}$ ways
Where as 5 consonants can be arranged them selves in 5 ! Ways.
Thus, the total number of ways it can be done

$$
\begin{aligned}
& ={ }^{6} P_{3} \times 5! \\
& =\frac{6!}{3!} \times 5! \\
& =5!\times 5! \\
& =120 \times 120 \\
& =14400
\end{aligned}
$$

45.Ans: D
$N=P_{1}^{a_{1}} P_{2}^{a_{2}} \ldots \ldots P_{k}^{a s e}$
Total no. of divisors including
$n\left(a_{1+1}\right)\left(a_{2+1}\right) \ldots \ldots . .\left(a_{k+1}\right)$
$9600=2^{7} \times 3 \times 5^{2}$
No. of divisor $=(7+1)(1+1)(2+1)$
$=48$

