## DIRECTORATE OF SCHOOL EDUCATION TAMILNADU

$\left.\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { 12NPCB11 } \\ (2023-24)\end{array} & \text { NEET PRACTICE QUESTIONS } \\ \text { (TEST-11) }\end{array} \begin{array}{c}\text { Class: XII } \\ \text { Time : 1.15 hrs } \\ \text { Total Marks : 240 }\end{array}\right]$

1. Ans: B)

$$
\begin{gathered}
1 / f(\mu-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]=\frac{1}{0.3}=(1.5-1)\left(\frac{1}{\alpha}-\frac{1}{R}\right) \\
\frac{1}{0.3}=0.5 \times \frac{1}{R} \\
\mathrm{R}=0.15 \mathrm{~m}
\end{gathered}
$$

2. Ans: D)

Mirror formula $m=\frac{f u}{u-f}$

$$
\begin{aligned}
& u_{1}=u-L / 2 \quad u_{2}=u+L / 2 \\
& L^{1}=u_{1}-u_{2}=\frac{f(u-L / 2)}{(u-L / 2-f)}-\frac{f(u+L / 2)}{(u+L / 2-f)} \\
& =f-\frac{L f}{(u-f)^{2}-L^{2} / 4}=L\left(\frac{f}{u-f}\right)^{2}
\end{aligned}
$$

3. Ans: B)
$I \propto \frac{1}{\lambda 4}$

$$
\frac{\lambda_{1}}{\lambda_{2}}=\left(\frac{I_{2}}{I_{1}}\right)^{1 / 4}=\left(\frac{4}{1}\right)^{1 / 4}=\sqrt{2}: 1
$$

4. Ans: C)

5. Ans: D)

$$
\begin{aligned}
& \sqrt{3} \sin 30^{\circ}=1 \sin e \\
& \frac{\sqrt{3}}{2}=\sin e \\
& \mathrm{e}=60^{\circ}
\end{aligned}
$$


6. Ans: C)

$$
u \rightarrow f \quad v \rightarrow \infty \quad u \rightarrow \infty \quad v \rightarrow f
$$

7. Ans: D)

If mirror is placed in medium other than air its focal length does not change as $f=R / 2$ But for lens

$$
\begin{aligned}
& \frac{1}{f_{a}}=\left({ }_{a} \mu_{g}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& \frac{1}{f_{w}}=\left({ }_{w} \mu_{g}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& { }_{w} \mu_{g}<_{a} \mu_{g}
\end{aligned}
$$

Hence focal length of lens in water increases more. More over refractive index of water $4 / 3$ and for air 1 , so both assertion and reason wrong.
8. Ans: D
9. Ans: D)
$K Q=\frac{K P}{2}$
$F=K x$
$u=\frac{1}{2} k x^{2}$
$F_{p}=k_{p} x_{p}$
$F_{Q}=-K Q x_{p}$
$\frac{F_{P}}{F_{Q}}=\frac{x_{P}}{x_{Q}}$
$F_{P}=F_{Q}$
$\frac{U_{P}}{U_{Q}}=\frac{K_{P} \times P^{2}}{K_{Q} \times Q^{2}}$
$=K_{P} / K_{Q} \times \frac{K Q^{2}}{K P^{2}}=\frac{1}{2}$
$U_{p}=E / 2$

## 10.Ans: D)

Force constant $(\mathrm{K})=$ young modules $\times$ Interatomic distance $7=3 \times 10^{10} \mathrm{Y}$

$$
Y=\frac{7}{3} \times 10^{10}
$$

$$
=2.33 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
$$

11.Ans: B)
$T=k x$
$x=\frac{T}{K}$
Energy stored

$$
\begin{aligned}
& =\frac{1}{2} K x^{2} \\
& =\frac{1}{2} K\left(\frac{T}{K}\right)^{2} \\
& =\frac{1}{2} \quad \frac{T^{2}}{K} \\
& =\frac{T^{2}}{2 K}
\end{aligned}
$$

## 12.Ans: A)

Both assertion and reason are correct Reason is correct explanation for assertion
13.Ans: D)

$$
l=F l / A y \quad l \propto \frac{1}{r^{2}}
$$

For same load thickest wire will show less elongation. So d is correct
14.Ans: D)

$$
\begin{aligned}
& \text { Compressibility }=\frac{1}{\text { Bulk modulus }}=\frac{-\Delta V / V}{\Delta P} \\
& 50 \times 10^{-11} \mathrm{~m}^{2} N^{-1}=\frac{\Delta V}{10^{-3} \times 9 \times 10^{5}} \\
& \Delta V=-50 \times 10^{-11} \times 10^{-3} \times 9 \times 10^{5}=-4.5 \times 10^{-7} \mathrm{~m}^{3} \\
& =
\end{aligned}
$$

15.Ans: B)

Surface area of the drop be fore merging $=4 \pi r^{2}$
Total area of both drop $=8 \pi r^{2}$
Volume of big gest drop $=2 \times \frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& \frac{4}{3} \pi R^{3}=\frac{8}{3} \pi r^{3} \\
& R=2^{1 / 2} r
\end{aligned}
$$

Surface energy $8 \pi r^{2} S-4 \times 2^{2 / 3} \pi r^{2} S$

$$
=1.65 \pi r^{2} S
$$

## DIRECTORATE OF SCHOOL EDUCATION TAMILNADU

| 11NPCB11 | NEET PRACTICE QUESTIONS | Class: XII |
| :---: | :---: | :---: |
| $(2023-24)$ | TEST-11) | Total Marks : 240 |

## Answer key

11 ${ }^{\text {TH }}$ - Physics

1. Ans: D)
$K Q=\frac{K P}{2}$
$F=K x$
$u=\frac{1}{2} k x^{2}$
$F_{p}=k_{p} x_{p}$
$F_{Q}=-K Q x_{p}$
$\frac{F_{P}}{F_{Q}}=\frac{x_{P}}{x_{Q}}$
$F_{P}=F_{Q}$
$\frac{U_{P}}{U_{Q}}=\frac{K_{P} \times P^{2}}{K_{Q} \times Q^{2}}$
$=K_{P} / K_{Q} \times \frac{K Q^{2}}{K P^{2}}=\frac{1}{2}$
$U_{p}=E / 2$
2. Ans: D)

Force constant $(K)=$ young modules $\times$ Interatomic distance

$$
\begin{aligned}
& 7=3 \times 10^{10} \mathrm{Y} \\
& Y=\frac{7}{3} \times 10^{10} \\
& =2.33 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

3. Ans: B)

$$
\begin{aligned}
& \begin{aligned}
& T=k x \\
& x=\frac{T}{K}
\end{aligned} \\
& \begin{aligned}
& \text { Energy stored } \\
&=\frac{1}{2} K x^{2} \\
&=\frac{1}{2} K\left(\frac{T}{K}\right)^{2} \\
&=\frac{1}{2} \frac{T^{2}}{K} \\
&=\frac{T^{2}}{2 K}
\end{aligned}
\end{aligned}
$$

4. Ans: A)

Both assertion and reason are correct Reason is correct explanation for assertion
5. Ans: D)

$$
l=F l / A y \quad l \propto \frac{1}{r^{2}}
$$

For same load thickest wire will show less elongation. So d is correct
6. Ans: D)

$$
\begin{aligned}
& \text { Compressibility }=\frac{1}{\text { Bulk modulus }}=\frac{-\Delta V / V}{\Delta P} \\
& 50 \times 10^{-11} \mathrm{~m}^{2} N^{-1}=\frac{\Delta V}{10^{-3} \times 9 \times 10^{5}} \\
& \Delta V=-50 \times 10^{-11} \times 10^{-3} \times 9 \times 10^{5}=-4.5 \times 10^{-7} \mathrm{~m}^{3} \\
& =-0.45 \mathrm{~cm}^{3}
\end{aligned}
$$

7. Ans: B)

Surface area of the drop be fore merging $=4 \pi r^{2}$
Total area of both drop $=8 \pi r^{2}$
Volume of big gest drop $=2 \times \frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& \frac{4}{3} \pi R^{3}=\frac{8}{3} \pi r^{3} \\
& R=2^{1 / 2} r
\end{aligned}
$$

Surface energy $8 \pi r^{2} S-4 \times 2^{2 / 3} \pi r^{2} S$

$$
=1.65 \pi r^{2} S
$$

8. Ans: C)

$$
\begin{aligned}
& \mathrm{m}=1 \mathrm{~kg} \\
& \begin{aligned}
& \mathrm{V}=3.6 \times 10^{-4} \mathrm{~m}^{3} \\
& \mathrm{~T}=\mathrm{mg}=\mathrm{mg}-\mathrm{VP}_{\mathrm{w}} \mathrm{~g} \\
& \text { Decrease in tension } \\
& \mathrm{T}-\mathrm{T}^{1} \\
&=\mathrm{mg}-\left[\mathrm{mg}^{\mathrm{v}} \mathrm{v} \mathrm{P}_{\mathrm{w}} \mathrm{~g}\right] \\
&=\mathrm{v} \mathrm{P}_{\mathrm{w}} \mathrm{~g} \\
&=3.6 \times 10^{-4} \times 10^{3} \times 10 \\
&=3.6 \mathrm{~N}
\end{aligned}
\end{aligned}
$$

9. Ans: D)

According to continuity equation $\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}=$ Const So the rate of flow of liquid is same
10.Ans: A)

It is based on Torricelli theorem Torricelli, law states that the speed $v$ of a liquid flowing under gravity out of an opining is propofional to square rnt of a vertical distance $v=\sqrt{2 g \Delta y}$

Let $t_{1}$ be the time taken by level to $h / 2$ and $t_{2}$ be from $h / 2$ to zero

$$
\begin{aligned}
& t_{1} \propto(\sqrt{h}-\sqrt{h / 2}) \\
& \frac{\sqrt{2}-1}{\sqrt{2}} \\
& \frac{1}{\sqrt{2}} \\
& =\frac{\sqrt{2}-1}{\sqrt{2}} \times \not \sqrt{2} \\
& \frac{1-\frac{1}{\sqrt{2}}}{1 / \sqrt{2}}=\sqrt{2}-1: 1
\end{aligned}
$$

$$
t \propto \sqrt{h / 2}
$$

11.Ans: B)

Tensile stress in wire will be - Tensile force / Area of cross section

$$
=\frac{m g}{\pi R^{2}}=\frac{4 \times 3.1 \not \hbar}{\not \hbar \times 4 \times 10^{6}}=3.1 \times 10^{6} \mathrm{Nm}^{-2}
$$

## 12.Ans: C)

$2 T L=m g T=\frac{m g}{2 L}=\frac{1.5 \times 10^{-2}}{2 \times 30 \times 10^{-2}}=\frac{1.5}{600}=0.025 \mathrm{~N} / \mathrm{m}$

## 13.Ans: B)

$$
h \propto \frac{1}{r}
$$

$\therefore$ Reduces to half
14.Ans: A)
$\Delta P_{1}=0.01=\frac{4 T}{R_{1}}$
$\Delta P_{2}=0.02=\frac{4 T}{R_{2}}$
$\frac{0.01}{0.02}=\frac{4 T}{R_{1}} \times \frac{R_{2}}{4 T}$
$1 / 2=\frac{R_{2}}{R_{1}} R_{1}=2 R_{2}$
$v_{1} / v_{2}=R_{1}^{3} / R_{2}^{3}=\frac{8 R_{2}^{3}}{R_{2}^{3}}=\frac{8 R_{2}^{3}}{R_{2}^{3}}=8: 1$

## 15.Ans: C)

$$
\begin{aligned}
& v=\frac{1}{2} \times \text { Force } \times \text { elongation } \\
& =\frac{1}{2} M g \times l \\
& =\frac{1}{2} M g l
\end{aligned}
$$

## DIRECTORATE OF SCHOOL EDUCATION TAMILNADU

| 12JPCM11 | JEE PRACTICE QUESTIONS | Class : XII |
| :---: | :---: | :---: |
| $(2023-24)$ | (TEST-11) | Time $: 1.15$ hrs |
| Total Marks : 180 |  |  |

Answer key
12 ${ }^{\text {TH }}$ - Physics

1. Ans: B)

$$
\begin{gathered}
1 / f(\mu-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]=\frac{1}{0.3}=(1.5-1)\left(\frac{1}{\alpha}-\frac{1}{R}\right) \\
\frac{1}{0.3}=0.5 \times \frac{1}{R} \\
\mathrm{R}=0.15 \mathrm{~m}
\end{gathered}
$$

2. Ans: D)

Mirror formula $m=\frac{f u}{u-f}$

$$
\begin{aligned}
& u_{1}=u-L / 2 \quad u_{2}=u+L / 2 \\
& L^{1}=u_{1}-u_{2}=\frac{f(u-L / 2)}{(u-L / 2-f)}-\frac{f(u+L / 2)}{(u+L / 2-f)} \\
& =f-\frac{L f}{(u-f)^{2}-L^{2} / 4}=L\left(\frac{f}{u-f}\right)^{2}
\end{aligned}
$$

3. Ans: B)

$$
\begin{aligned}
& I \propto \frac{1}{\lambda 4} \\
& \frac{\lambda_{1}}{\lambda_{2}}=\left(\frac{I_{2}}{I_{1}}\right)^{1 / 4}=\left(\frac{4}{1}\right)^{1 / 4}=\sqrt{2}: 1
\end{aligned}
$$

4. Ans: C)

5. Ans: D)

$$
\begin{aligned}
& \sqrt{3} \sin 30^{\circ}=1 \sin e \\
& \frac{\sqrt{3}}{2}=\sin e \\
& \mathrm{e}=60^{\circ}
\end{aligned}
$$


6. Ans: C)

$$
u \rightarrow f \quad v \rightarrow \infty \quad u \rightarrow \infty \quad v \rightarrow f
$$

7. Ans: D)

If mirror is placed in medium other than air its focal length does not change as $f=R / 2$ But for lens

$$
\begin{aligned}
& \frac{1}{f_{a}}=\left({ }_{a} \mu_{g}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& \frac{1}{f_{w}}=\left({ }_{w} \mu_{g}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& { }_{w} \mu_{g}<_{a} \mu_{g}
\end{aligned}
$$

Hence focal length of lens in water increases more. More over refractive index of water $4 / 3$ and for air 1 , so both assertion and reason wrong.
8. Ans: D
9. Ans: D)
$K Q=\frac{K P}{2}$
$F=K x$
$u=\frac{1}{2} k x^{2}$
$F_{p}=k_{p} x_{p}$
$F_{Q}=-K Q x_{p}$
$\frac{F_{P}}{F_{Q}}=\frac{x_{P}}{x_{Q}}$
$F_{P}=F_{Q}$
$\frac{U_{P}}{U_{Q}}=\frac{K_{P} \times P^{2}}{K_{Q} \times Q^{2}}$
$=K_{P} / K_{Q} \times \frac{K Q^{2}}{K P^{2}}=\frac{1}{2}$
$U_{p}=E / 2$

## 10.Ans: D)

Force constant $(\mathrm{K})=$ young modules $\times$ Interatomic distance $7=3 \times 10^{10} \mathrm{Y}$

$$
Y=\frac{7}{3} \times 10^{10}
$$

$$
=2.33 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
$$

11.Ans: B)
$T=k x$
$x=\frac{T}{K}$
Energy stored

$$
\begin{aligned}
& =\frac{1}{2} K x^{2} \\
& =\frac{1}{2} K\left(\frac{T}{K}\right)^{2} \\
& =\frac{1}{2} \quad \frac{T^{2}}{K} \\
& =\frac{T^{2}}{2 K}
\end{aligned}
$$

## 12.Ans: A)

Both assertion and reason are correct Reason is correct explanation for assertion
13.Ans: D)

$$
l=F l / A y \quad l \propto \frac{1}{r^{2}}
$$

For same load thickest wire will show less elongation. So d is correct
14.Ans: D)

$$
\begin{aligned}
& \text { Compressibility }=\frac{1}{\text { Bulk modulus }}=\frac{-\Delta V / V}{\Delta P} \\
& 50 \times 10^{-11} \mathrm{~m}^{2} N^{-1}=\frac{\Delta V}{10^{-3} \times 9 \times 10^{5}} \\
& \Delta V=-50 \times 10^{-11} \times 10^{-3} \times 9 \times 10^{5}=-4.5 \times 10^{-7} \mathrm{~m}^{3} \\
& =
\end{aligned}
$$

15.Ans: B)

Surface area of the drop be fore merging $=4 \pi r^{2}$
Total area of both drop $=8 \pi r^{2}$
Volume of big gest drop $=2 \times \frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& \frac{4}{3} \pi R^{3}=\frac{8}{3} \pi r^{3} \\
& R=2^{1 / 2} r
\end{aligned}
$$

Surface energy $8 \pi r^{2} S-4 \times 2^{2 / 3} \pi r^{2} S$

$$
=1.65 \pi r^{2} S
$$

## DIRECTORATE OF SCHOOL EDUCATION TAMILNADU

| 11JPCM11 | JEE PRACTICE QUESTIONS | Class : XI |
| :---: | :---: | :---: |
| $(2023-24)$ | (TEST-11) | Time $: 1.15$ hrs |
| Total Marks : 180 |  |  |

## Answer key

11 ${ }^{\text {TH }}$ - Physics

1. Ans: D)
$K Q=\frac{K P}{2}$
$F=K x$
$u=\frac{1}{2} k x^{2}$
$F_{p}=k_{p} x_{p}$
$F_{Q}=-K Q x_{p}$
$\frac{F_{P}}{F_{Q}}=\frac{x_{P}}{x_{Q}}$
$F_{P}=F_{Q}$
$\frac{U_{P}}{U_{Q}}=\frac{K_{P} \times P^{2}}{K_{Q} \times Q^{2}}$
$=K_{P} / K_{Q} \times \frac{K Q^{2}}{K P^{2}}=\frac{1}{2}$
$U_{p}=E / 2$
2. Ans: D)

Force constant $(K)=$ young modules $\times$ Interatomic distance

$$
\begin{aligned}
& 7=3 \times 10^{10} \mathrm{Y} \\
& Y=\frac{7}{3} \times 10^{10} \\
& =2.33 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

3. Ans: B)

$$
\begin{aligned}
& \begin{aligned}
& T=k x \\
& x=\frac{T}{K}
\end{aligned} \\
& \begin{aligned}
& \text { Energy stored } \\
&=\frac{1}{2} K x^{2} \\
&=\frac{1}{2} K\left(\frac{T}{K}\right)^{2} \\
&=\frac{1}{2} \frac{T^{2}}{K} \\
&=\frac{T^{2}}{2 K}
\end{aligned}
\end{aligned}
$$

4. Ans: A)

Both assertion and reason are correct Reason is correct explanation for assertion
5. Ans: D)

$$
l=F l / A y \quad l \propto \frac{1}{r^{2}}
$$

For same load thickest wire will show less elongation. So d is correct
6. Ans: D)

$$
\begin{aligned}
& \text { Compressibility }=\frac{1}{\text { Bulk modulus }}=\frac{-\Delta V / V}{\Delta P} \\
& 50 \times 10^{-11} \mathrm{~m}^{2} N^{-1}=\frac{\Delta V}{10^{-3} \times 9 \times 10^{5}} \\
& \Delta V=-50 \times 10^{-11} \times 10^{-3} \times 9 \times 10^{5}=-4.5 \times 10^{-7} \mathrm{~m}^{3} \\
& =-0.45 \mathrm{~cm}^{3}
\end{aligned}
$$

7. Ans: B)

Surface area of the drop be fore merging $=4 \pi r^{2}$
Total area of both drop $=8 \pi r^{2}$
Volume of big gest drop $=2 \times \frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& \frac{4}{3} \pi R^{3}=\frac{8}{3} \pi r^{3} \\
& R=2^{1 / 2} r
\end{aligned}
$$

Surface energy $8 \pi r^{2} S-4 \times 2^{2 / 3} \pi r^{2} S$

$$
=1.65 \pi r^{2} S
$$

8. Ans: C)

$$
\begin{aligned}
& \mathrm{m}=1 \mathrm{~kg} \\
& \begin{aligned}
& \mathrm{V}=3.6 \times 10^{-4} \mathrm{~m}^{3} \\
& \mathrm{~T}=\mathrm{mg}=\mathrm{mg}-\mathrm{VP}_{\mathrm{w}} \mathrm{~g} \\
& \text { Decrease in tension } \\
& \mathrm{T}-\mathrm{T}^{1} \\
&=\mathrm{mg}-\left[\mathrm{mg}^{\mathrm{v}} \mathrm{v} \mathrm{P}_{\mathrm{w}} \mathrm{~g}\right] \\
&=\mathrm{v} \mathrm{P}_{\mathrm{w}} \mathrm{~g} \\
&=3.6 \times 10^{-4} \times 10^{3} \times 10 \\
&=3.6 \mathrm{~N}
\end{aligned}
\end{aligned}
$$

9. Ans: D)

According to continuity equation $\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}=$ Const So the rate of flow of liquid is same
10.Ans: A)

It is based on Torricelli theorem Torricelli, law states that the speed $v$ of a liquid flowing under gravity out of an opining is propofional to square rnt of a vertical distance $v=\sqrt{2 g \Delta y}$

Let $t_{1}$ be the time taken by level to $h / 2$ and $t_{2}$ be from $h / 2$ to zero

$$
\begin{aligned}
& t_{1} \propto(\sqrt{h}-\sqrt{h / 2}) \\
& \frac{\sqrt{2}-1}{\sqrt{2}} \\
& \frac{1}{\sqrt{2}} \\
& =\frac{\sqrt{2}-1}{\sqrt{2}} \times \not \sqrt{2} \\
& \frac{1-\frac{1}{\sqrt{2}}}{1 / \sqrt{2}}=\sqrt{2}-1: 1
\end{aligned}
$$

$$
t \propto \sqrt{h / 2}
$$

11.Ans: B)

Tensile stress in wire will be - Tensile force / Area of cross section

$$
=\frac{m g}{\pi R^{2}}=\frac{4 \times 3.1 \not \hbar}{\not \hbar \times 4 \times 10^{6}}=3.1 \times 10^{6} \mathrm{Nm}^{-2}
$$

## 12.Ans: C)

$2 T L=m g T=\frac{m g}{2 L}=\frac{1.5 \times 10^{-2}}{2 \times 30 \times 10^{-2}}=\frac{1.5}{600}=0.025 \mathrm{~N} / \mathrm{m}$

## 13.Ans: B)

$h \propto \frac{1}{r}$
$\therefore$ Reduces to half
14.Ans: A)

$$
\begin{aligned}
& \Delta P_{1}=0.01=\frac{4 T}{R_{1}} \\
& \Delta P_{2}=0.02=\frac{4 T}{R_{2}} \\
& \frac{0.01}{0.02}=\frac{4 T}{R_{1}} \times \frac{R_{2}}{4 T} \\
& 1 / 2=\frac{R_{2}}{R_{1}} R_{1}=2 R_{2} \\
& v_{1} / v_{2}=R_{1}^{3} / R_{2}^{3}=\frac{8 R_{2}^{3}}{R_{2}^{3}}=\frac{8 R_{2}^{3}}{R_{2}^{3}}=8: 1
\end{aligned}
$$

## 15.Ans: C)

$$
\begin{aligned}
& v=\frac{1}{2} \times \text { Force } \times \text { elongation } \\
& =\frac{1}{2} M g \times l \\
& =\frac{1}{2} M g l
\end{aligned}
$$

