DIRECTORATE OF SCHOOL EDUCATION TAMILNADU

12NPCB13	NEET PRACTICE QUESTIONS	Class: XII
$(2023-24)$	Time : 1.15 hrs	
(TEST-13)	Total Marks : 240	

Answer key

$12^{\text {TH }}$ Physics

1. Ans:C)

Magnification of Telescope $M=f o / f e$
Magnification of eyepiece

$$
M=f o / f e+4=L_{1} / L_{0}
$$

For the eye piece the distance of the object is $-(f o+f e)$

$$
\begin{aligned}
& f e / f e-(f o+f e)=-1 / 2 \quad f e / f o=1 / 2 \\
& M=f o / f e=L / l
\end{aligned}
$$

2. Ans:C)

The magnifying power of a telescope is the ratio of angular size of the image to angular size of the object Magnifying power $=20$. The angular size of the image is 20 times that of object
The image formed is 20 times nearer to the object.
3. Ans :A)

$$
\begin{array}{ll}
U=-8 \mathrm{~cm} & f=10 \mathrm{~cm} \\
\frac{1}{f}=\frac{1}{v}-\frac{1}{u} \quad 1 / 10=\frac{1}{v}-\left(\frac{1}{-8}\right) \\
v=-40 \mathrm{~cm} \\
m=\frac{-40}{-8}=5
\end{array}
$$

4. Ans :D)

$$
\begin{aligned}
& \text { R.P a } \lambda \\
& \frac{(R . P)}{R P_{2}}=\frac{\lambda_{1}}{\lambda_{2}}=5 / 4
\end{aligned}
$$

5. Ans :C)

For astronomical refracting telescope Angular magnification is more for large focal length

$$
\text { M.P }=f o / f e
$$

Resolving power $=d / 1.22 \lambda$
Resolving power is high for large diameter
6. Ans: D)

$$
\begin{aligned}
& P o=0.5 D \\
& P e=20 D \\
& M=f o / f e \\
& o r=P e / P o \\
& =\frac{20}{0.5}=40
\end{aligned}
$$

7. Ans: C)

The resolving power of an instrument is given by the formal

$$
\begin{aligned}
\text { R.P }= & 1.22 \times \frac{\lambda D}{d} \\
\text { R.P }= & \frac{1.22 \times 500 \times 10^{-9}}{5 \times 10^{-3}} \times 400 \times 1000 \\
& =\frac{1.22 \times 10^{-2}}{10^{-3}} \times 4=1.22 \times 40 \\
& =50 \mathrm{~m}
\end{aligned}
$$

8. Ans: B)

$$
\begin{aligned}
\text { Resolution } & =\frac{1.22 \lambda}{d} \\
& =\frac{1.22 \times 600 \times 10^{-9}}{250 \times 10^{-2}} \\
& =2.9 \times 10^{-7} \mathrm{rad}
\end{aligned}
$$

9. Ans : A)

As per Question $\Delta l_{c u}=\Delta l_{\Delta l}$
(or)

$$
t_{c u} \alpha_{c u} \Delta l T=l_{A l} \alpha_{A l} \Delta T
$$

$$
l_{A l}=\frac{l_{c u} \times \alpha_{c u} \times \Delta T}{\alpha_{A l} \Delta T}
$$

$$
=\frac{88 \times 1.7 \times 10^{-3}}{2.2 \times 10^{-5}}=68 \mathrm{~cm}
$$

10.Ans:A) Heat required $\Delta \mathrm{Q}=\mathrm{mS} \Delta \mathrm{T}$

$$
\begin{aligned}
& \Delta Q=V \times P \times S \times \Delta T \\
& \frac{4}{3} \pi r^{3} P S \Delta T \\
& \Delta Q_{1} / \Delta Q_{2}=\frac{r_{1}^{3}}{r_{2}^{3}}=\frac{\left(1.5 r_{1}\right)^{3}}{\left(r_{2}\right)^{3}}=(1.5)^{3} \\
& 10.375=27 / 8
\end{aligned}
$$

11.Ans :D)

Gravitational potential energy - mgh
Heat absorbed by ice to melt completely

$$
\begin{aligned}
& \quad \Delta Q=m L \\
& \therefore=m L=\frac{1}{4} m g h \quad h=\frac{4 L}{g} \\
& h=\frac{4 \times 3.4 \times 10^{5}}{10}=13.6 \times 10^{4} \\
& =136 \times 10^{3}=136 \mathrm{~km}
\end{aligned}
$$

12.Ans : B)

Equivalent thermal conductivity of the composite rod in parallel combination will be
From the figure length and breadth are same So area is same $\mathrm{A}_{1}=\mathrm{A}_{2}=\mathrm{A}$

$$
\begin{aligned}
& K=\frac{K_{1} A+K_{2} A}{A+A} \\
& \frac{A\left(K_{1}+K_{2}\right)}{2 A}=\frac{K_{1}+K_{2}}{2}
\end{aligned}
$$

13.Ans :A)

According to Steffen's law

$$
E \propto T^{4}
$$

$$
E \propto(727+273)^{4}
$$

$$
E \propto(1000)^{4}
$$

14.Ans : B)

According to weans law

$$
\lambda \mathrm{mT}=\mathrm{constant}
$$

$$
\lambda^{1}=2 / 3 \lambda m
$$

15.Ans : C)

$$
\begin{aligned}
& \frac{d Q}{d t}=\frac{\Delta T}{R} \\
& R=\frac{L}{K} \\
& \frac{d Q}{d t}=\frac{K A\left(T_{1}-T_{2}\right)}{L}
\end{aligned}
$$

DIRECTORATE OF SCHOOL EDUCATION TAMILNADU

11NPCB13	NEET PRACTICE QUESTIONS	Class : XII
$(2023-24)$	Time : 1.15 hrs	
(TEST-13)	Total Marks : 240	

Answer key

11 ${ }^{\text {TH }}$ - Physics

1. Ans :A)

As per Question $\Delta l_{c u}=\Delta l_{A l}$

$$
\begin{aligned}
& \text { (or) } \\
& t_{c u} \alpha_{c u} \Delta l T=l_{A 1} \alpha_{A l} \Delta T \\
& l_{A l}=\frac{l_{c u} \times \alpha_{c u} \times \Delta T}{\alpha_{A l} \Delta T} \\
& =\frac{88 \times 1.7 \times 10^{-3}}{2.2 \times 10^{-5}}=68 \mathrm{~cm}
\end{aligned}
$$

2. Ans:A)

Heat required $\Delta \mathrm{Q}=\mathrm{mS} \Delta \mathrm{T}$

$$
\begin{aligned}
& \Delta Q=V \times P \times S \times \Delta T \\
& \frac{4}{3} \pi r^{3} P S \Delta T \\
& \Delta Q_{1} / \Delta Q_{2}=\frac{r_{1}^{3}}{r_{2}^{3}}=\frac{\left(1.5 r_{1}\right)^{3}}{\left(r_{2}\right)^{3}}=(1.5)^{3} \\
& 2.375=27 / 8
\end{aligned}
$$

3. Ans :D)

Gravitational potential energy - mgh
Heat absorbed by ice to melt completely

$$
\begin{gathered}
\Delta Q=m L \\
\therefore=m L=\frac{1}{4} m g h \quad h=\frac{4 L}{g}
\end{gathered}
$$

$$
\begin{aligned}
& h=\frac{4 \times 3.4 \times 10^{5}}{10}=13.6 \times 10^{4} \\
& =136 \times 10^{3}=136 \mathrm{~km}
\end{aligned}
$$

4. Ans :B)

Equivalent thermal conductivity of the composite rod in parallel combination will be
From the figure length and breadth are same So area is same

$$
\begin{aligned}
& \mathrm{A}_{1}=\mathrm{A}_{2}=\mathrm{A} \\
& K=\frac{K_{1} A+K_{2} A}{A+A} \\
& \frac{A\left(K_{1}+K_{2}\right)}{2 A}=\frac{K_{1}+K_{2}}{2}
\end{aligned}
$$

5. Ans :A)

According to Steffen's law

$$
\begin{aligned}
& E \propto T^{4} \\
& E \propto(727+273)^{4} \\
& E \propto(1000)^{4}
\end{aligned}
$$

6. Ans : B)

According to weans law
$\lambda \mathrm{mT}=$ constant

$$
\lambda^{1}=2 / 3 \lambda m
$$

7. Ans :C)

$$
\begin{aligned}
& \frac{d Q}{d t}=\frac{\Delta T}{R} \\
& R=\frac{L}{K} \\
& \frac{d Q}{d t}=\frac{K A\left(T_{1}-T_{2}\right)}{L}
\end{aligned}
$$

8. Ans :B)

Linear expansion brass $=a_{1}$
Linear expansion of steel $=\alpha_{2}$

$$
\begin{gathered}
l_{1}^{1}=l_{1}\left(1+\alpha_{1} \Delta T\right) \\
l_{2}^{1}=l_{2}\left(1+\alpha_{2} \Delta T\right) \\
\left(l_{2}^{1}-l_{1}^{1}\right)=\left(l_{2}-l_{1}\right)+\left(l_{2} \alpha_{2}-l_{1} d_{1}\right) \Delta T \\
\left(l_{2}^{1}-l_{1}^{1}\right)=\left(l_{2}-l_{1}\right)(\text { for all temp }) \\
\left(l_{2} \alpha_{2}-l_{1} \alpha_{1}\right)=0 \\
l_{2} \alpha_{2}=l_{1} \alpha_{1}
\end{gathered}
$$

9. Ans: C)

$$
\begin{aligned}
& \mathrm{r}=10 \mathrm{~cm}-0.10 \mathrm{~m} \\
& \mathrm{~T}=1000 \mathrm{~K} \\
& \sigma-5.67 \times 10^{-8} \mathrm{SI} \text { units }
\end{aligned}
$$

Heat energy incident / see/ area

$$
-\sigma T^{4}
$$

Total energy incident / see

$$
\begin{aligned}
=\sigma T^{4} \times & \text { Area of sphere } \\
& E=\sigma T^{4} \times 4 \pi r^{2} \\
= & 5.67 \times 10^{-8}\left(10^{3}\right)^{4} \times 4 \times \frac{22}{7} \times(0.01)^{2} \\
= & 7128 \mathrm{~J} \mathrm{~S}^{-1}
\end{aligned}
$$

10.Ans:A)

$$
\begin{align*}
& \text { R. } 10^{\circ} \mathrm{C} \\
& 100^{\circ} \mathrm{C}(\text { Stean }) \\
& Q=\frac{K A\left(T_{1} T_{2}\right) t}{L}=\frac{0.36 \mathrm{~m}^{2}}{K \times 0.36(100-0) \times 3600} \\
& \frac{K \times 0.36 \times 100 \times 3600}{0.1} \\
& m_{\text {ice }}=\frac{Q}{4 f} \tag{2}\\
& Q=m_{\text {ice }} \times L f=4.8 \times 3.36 \times 5
\end{align*}
$$

From (1)

$$
\begin{aligned}
& \frac{K \times 0.36 \times 100 \times 3600}{0.1}=4.8 \times 3.36 \times 10^{5} \\
& K=\frac{4.8 \times 3.36 \times 10^{5} \times 0.1}{0.36 \times 100 \times 3600} \\
& =1.24 \mathrm{~J} / \mathrm{m} / \mathrm{s} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

11.Ans: A)

$$
\begin{aligned}
& m_{w} S_{w} \Delta_{\theta}=m_{\text {ice }} L_{\text {ice }} \\
& m_{\text {ice }}=\frac{m_{w} S_{w} \Delta_{\theta}}{\text { Lice }} \\
& \frac{0.2 \times 4200 \times 25}{3.4 \times 10^{5}}=0.0617 \mathrm{~kg} \\
& \quad=61.7 \mathrm{~g}
\end{aligned}
$$

12.Ans: B)

Both assertion and reason are correct
When rod is heated its length automatically increases and thermal stress developed
For not producing thermal stress we use claiming on both end of the rod and when we heat the rod the claiming help not to increase length of the rod and no thermal stress is developed
$\therefore \mathrm{R}$ is correct
But Reason is not correct explanation
13.Ans: B)

According to newton's Law of cooling $\frac{d T}{d t}=K(T-T s)$

$$
\begin{gathered}
\frac{d T_{1}}{d t}=K\left(T_{1}-T_{s}\right) \\
\frac{d T_{2}}{d t}=K\left(T_{2}-T_{s}\right) \\
\frac{T_{1}-T_{2}}{\Delta t}=C\left[\frac{T_{1}+T_{2}}{2}-T_{o}\right] \\
\frac{3 T-2 T}{10}=C\left[\frac{3 T+2 T}{2}-T\right] \\
\frac{T}{10}=C\left[\frac{3 T}{2}\right]
\end{gathered}
$$

$$
C=2 / 30
$$

x be the temperature of the body

$$
\begin{aligned}
{\left[\frac{2 T-x}{10}\right.} & =\frac{2}{30}\left(\frac{2 T+x}{2}-T\right) \\
& =2 / 30(x / 2) \\
& x=3 T / 2
\end{aligned}
$$

14.Ans: A)

$$
\begin{aligned}
& \text { Slabs are in series } \\
& \begin{array}{l}
\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2} \\
\begin{aligned}
& 1 / A K_{e f f}=1 / A K_{e f f}-\frac{1}{A K}+\frac{1}{A 2 K} \\
& \quad=1 / K+1 / 2 K=\frac{3}{2} K \\
& \\
& \text { Keff }=\frac{2 K}{3}
\end{aligned}
\end{array}
\end{aligned}
$$

15.Ans:C)

$$
\begin{aligned}
& E=\sigma A T^{4} \\
& \frac{E_{1}}{E_{2}}=\frac{r_{1}^{2} T_{1}^{4}}{r_{2}^{2} \times T_{2}^{4}} \\
& =\frac{(0.12)^{2} \times 500^{4}}{(0.06)^{2} \times(1000)^{4}} \\
& =1800 \mathrm{~W}
\end{aligned}
$$

DIRECTORATE OF SCHOOL EDUCATION TAMILNADU

12JPCM13	JEE PRACTICE QUESTIONS	Class : XII
$(2023-24)$	(TEST-13)	Time : 1.15 hrs
Total Marks : 180		

Answer key

12 ${ }^{\text {TH }}$ - Physics

1. Ans:C)

Magnification of Telescope $M=f o / f e$
Magnification of eyepiece

$$
M=f o / f e+4=L_{1} / L_{0}
$$

For the eye piece the distance of the object is $-(f o+f e)$

$$
\begin{aligned}
& f e / f e-(f o+f e)=-1 / 2 \quad f e / f o=1 / 2 \\
& M=f o / f e=L / l
\end{aligned}
$$

2. Ans :C)

The magnifying power of a telescope is the ratio of angular size of the image to angular size of the object Magnifying power = 20. The angular size of the image is 20 times that of object
The image formed is 20 times nearer to the object.
3. Ans:A)

$$
\begin{array}{ll}
U=-8 \mathrm{~cm} & f=10 \mathrm{~cm} \\
\frac{1}{f}=\frac{1}{v}-\frac{1}{u} \quad 1 / 10=\frac{1}{v}-\left(\frac{1}{-8}\right) \\
v=-40 \mathrm{~cm} \\
m=\frac{-40}{-8}=5
\end{array}
$$

4. Ans :D)

$$
\begin{aligned}
& \text { R.P } \subset \lambda \\
& \frac{(R . P)}{R P_{2}}=\frac{\lambda_{1}}{\lambda_{2}}=5 / 4
\end{aligned}
$$

5. Ans :C)

For astronomical refracting telescope Angular magnification is more for large focal length

$$
\mathrm{M} \cdot \mathrm{P}=f o / f e
$$

Resolving power $=d / 1.22 \lambda$
Resolving power is high for large diameter
6. Ans: D)

$$
\begin{aligned}
& P o=0.5 D \\
& P e=20 D \\
& M=f o / f e \\
& o r=P e / P o \\
& =\frac{20}{0.5}=40
\end{aligned}
$$

7. Ans : C)

The resolving power of an instrument is given by the formal

$$
\begin{aligned}
\text { R.P }= & 1.22 \times \frac{\lambda D}{d} \\
\text { R.P }= & \frac{1.22 \times 500 \times 10^{-9}}{5 \times 10^{-3}} \times 400 \times 1000 \\
& =\frac{1.22 \times 10^{-2}}{10^{-3}} \times 4=1.22 \times 40 \\
& =50 \mathrm{~m}
\end{aligned}
$$

8. Ans : B)

$$
\begin{aligned}
\text { Resolution } & =\frac{1.22 \lambda}{d} \\
& =\frac{1.22 \times 600 \times 10^{-9}}{250 \times 10^{-2}} \\
& =2.9 \times 10^{-7} \mathrm{rad}
\end{aligned}
$$

9. Ans :A)

As per Question $\Delta l_{c u}=\Delta l_{A l}$

$$
\begin{aligned}
& \text { (or) } \\
& t_{c u} \alpha_{c u} \Delta l T=l_{A l} \alpha_{A l} \Delta T \\
& l_{A l}=\frac{l_{c u} \times \alpha_{c u t} \times \Delta T}{\alpha_{A l} \Delta T} \\
& =\frac{88 \times 1.7 \times 10^{-3}}{2.2 \times 10^{-5}}=68 \mathrm{~cm}
\end{aligned}
$$

10.Ans :A)

Heat required $\Delta \mathrm{Q}=\mathrm{mS} \Delta \mathrm{T}$

$$
\Delta Q=V \times P \times S \times \Delta T
$$

$$
\frac{4}{3} \pi r^{3} P S \Delta T
$$

$$
\Delta Q_{1} / \Delta Q_{2}=\frac{r_{1}^{3}}{r_{2}^{3}}=\frac{\left(1.5 r_{1}\right)^{3}}{\left(r_{2}\right)^{3}}=(1.5)^{3}
$$

$$
10.375=27 / 8
$$

11.Ans :D)

Gravitational potential energy - mgh Heat absorbed by ice to melt completely

$$
\begin{aligned}
& \Delta Q=m L \\
& \therefore=m L=\frac{1}{4} m g h \quad h=\frac{4 L}{g} \\
& h=\frac{4 \times 3.4 \times 10^{5}}{10}=13.6 \times 10^{4} \\
& =136 \times 10^{3}=136 \mathrm{~km}
\end{aligned}
$$

12.Ans :B)

Equivalent thermal conductivity of the composite rod in parallel combination will be
From the figure length and breadth are same So area is same $\mathrm{A}_{1}=\mathrm{A}_{2}=\mathrm{A}$

$$
K=\frac{K_{1} A+K_{2} A}{A+A}
$$

$$
\frac{A\left(K_{1}+K_{2}\right)}{2 \nexists}=\frac{K_{1}+K_{2}}{2}
$$

13.Ans :A)

According to Steffen's law
$E \propto T^{4}$
$E \propto(727+273)^{4}$
$E \propto(1000)^{4}$
14.Ans : B)

According to weans law
$\lambda \mathrm{mT}=$ constant

$$
\lambda^{1}=2 / 3 \lambda m
$$

15.Ans :C)

$$
\begin{aligned}
& \frac{d Q}{d t}=\frac{\Delta T}{R} \\
& R=\frac{L}{K} \\
& \frac{d Q}{d t}=\frac{K A\left(T_{1}-T_{2}\right)}{L}
\end{aligned}
$$

DIRECTORATE OF SCHOOL EDUCATION TAMILNADU

11JPCM13 $(2023-24)$	JEE PRACTICE QUESTIONS	Class : XI
Time $: 1.15$ hrs		
(TEST-13)	Total Marks : 180	

Answer key

11 ${ }^{\text {TH }}$ - Physics

1. Ans :A)

As per Question $\Delta l_{c u}=\Delta l_{A l}$

$$
\begin{aligned}
& \text { (or) } \\
& t_{c u l} \alpha_{c u} \Delta l T=l_{A l} \alpha_{A l} \Delta T \\
& l_{A l} \frac{l_{c u} \times \alpha_{c u} \times \Delta T}{\alpha_{A l} \Delta T} \\
& =\frac{88 \times 1.7 \times 10^{-3}}{2.2 \times 10^{-5}}=68 \mathrm{~cm}
\end{aligned}
$$

2. Ans : A)

Heat required $\Delta \mathrm{Q}=\mathrm{mS} \Delta \mathrm{T}$

$$
\begin{aligned}
& \Delta Q=V \times P \times S \times \Delta T \\
& \frac{4}{3} \pi r^{3} P S \Delta T \\
& \Delta Q_{1} / \Delta Q_{2}=\frac{r_{1}^{3}}{r_{2}^{3}}=\frac{\left(1.5 r_{1}\right)^{3}}{\left(r_{2}\right)^{3}}=(1.5)^{3} \\
& 2.375=27 / 8
\end{aligned}
$$

3. Ans : D)

Gravitational potential energy - mgh
Heat absorbed by ice to melt completely

$$
\begin{array}{r}
\Delta Q=m L \\
\therefore=m L=\frac{1}{4} m g h \quad h=\frac{4 L}{g}
\end{array}
$$

$$
\begin{aligned}
& h=\frac{4 \times 3.4 \times 10^{5}}{10}=13.6 \times 10^{4} \\
& =136 \times 10^{3}=136 \mathrm{~km}
\end{aligned}
$$

4. Ans :B)

Equivalent thermal conductivity of the composite rod in parallel combination will be
From the figure length and breadth are same So area is same

$$
\begin{aligned}
& \mathrm{A}_{1}=\mathrm{A}_{2}=\mathrm{A} \\
& K=\frac{K_{1} A+K_{2} A}{A+A} \\
& \frac{A\left(K_{1}+K_{2}\right)}{2 A}=\frac{K_{1}+K_{2}}{2}
\end{aligned}
$$

5. Ans :A)

According to Steffen's law

$$
\begin{aligned}
& E \propto T^{4} \\
& E \propto(727+273)^{4} \\
& E \propto(1000)^{4}
\end{aligned}
$$

6. Ans : B)

According to weans law
$\lambda \mathrm{mT}=$ constant

$$
\lambda^{1}=2 / 3 \lambda m
$$

7. Ans :C)

$$
\begin{aligned}
& \frac{d Q}{d t}=\frac{\Delta T}{R} \\
& R=\frac{L}{K} \\
& \frac{d Q}{d t}=\frac{K A\left(T_{1}-T_{2}\right)}{L}
\end{aligned}
$$

8. Ans :B)

Linear expansion brass $=a_{1}$
Linear expansion of steel $=\alpha_{2}$

$$
\begin{gathered}
l_{1}^{1}=l_{1}\left(1+\alpha_{1} \Delta T\right) \\
l_{2}^{1}=l_{2}\left(1+\alpha_{2} \Delta T\right) \\
\left(l_{2}^{1}-l_{1}^{1}\right)=\left(l_{2}-l_{1}\right)+\left(l_{2} \alpha_{2}-l_{1} d_{1}\right) \Delta T \\
\left(l_{2}^{1}-l_{1}^{1}\right)=\left(l_{2}-l_{1}\right)(\text { for all temp }) \\
\left(l_{2} \alpha_{2}-l_{1} \alpha_{1}\right)=0 \\
l_{2} \alpha_{2}=l_{1} \alpha_{1}
\end{gathered}
$$

9. Ans: C)

$$
\begin{aligned}
& \mathrm{r}=10 \mathrm{~cm}-0.10 \mathrm{~m} \\
& \mathrm{~T}=1000 \mathrm{~K} \\
& \sigma-5.67 \times 10^{-8} \mathrm{SI} \text { units }
\end{aligned}
$$

Heat energy incident / see/ area

$$
-\sigma T^{4}
$$

Total energy incident / see

$$
\begin{aligned}
=\sigma T^{4} \times & \text { Area of sphere } \\
& E=\sigma T^{4} \times 4 \pi r^{2} \\
= & 5.67 \times 10^{-8}\left(10^{3}\right)^{4} \times 4 \times \frac{22}{7} \times(0.01)^{2} \\
= & 7128 \mathrm{~J} \mathrm{~S}^{-1}
\end{aligned}
$$

10.Ans:A)

$$
\begin{align*}
& \text { R. } 10^{\circ} \mathrm{C} \\
& 100^{\circ} \mathrm{C}(\text { Stean }) \\
& Q=\frac{K A\left(T_{1} T_{2}\right) t}{L}=\frac{0.36 \mathrm{~m}^{2}}{K \times 0.36(100-0) \times 3600} \\
& \frac{K \times 0.36 \times 100 \times 3600}{0.1} \\
& m_{\text {ice }}=\frac{Q}{4 f} \tag{2}\\
& Q=m_{\text {ice }} \times L f=4.8 \times 3.36 \times 5
\end{align*}
$$

From (1)

$$
\begin{aligned}
& \frac{K \times 0.36 \times 100 \times 3600}{0.1}=4.8 \times 3.36 \times 10^{5} \\
& K=\frac{4.8 \times 3.36 \times 10^{5} \times 0.1}{0.36 \times 100 \times 3600} \\
& =1.24 \mathrm{~J} / \mathrm{m} / \mathrm{s} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

11.Ans: A)

$$
\begin{aligned}
& m_{w} S_{w} \Delta_{\theta}=m_{\text {ice }} L_{\text {ice }} \\
& m_{\text {ice }}=\frac{m_{w} S_{w} \Delta_{\theta}}{\text { Lice }} \\
& \frac{0.2 \times 4200 \times 25}{3.4 \times 10^{5}}=0.0617 \mathrm{~kg} \\
& \quad=61.7 \mathrm{~g}
\end{aligned}
$$

12.Ans: B)

Both assertion and reason are correct
When rod is heated its length automatically increases and thermal stress developed
For not producing thermal stress we use claiming on both end of the rod and when we heat the rod the claiming help not to increase length of the rod and no thermal stress is developed
$\therefore \mathrm{R}$ is correct
But Reason is not correct explanation
13.Ans: B)

According to newton's Law of cooling $\frac{d T}{d t}=K(T-T s)$

$$
\begin{gathered}
\frac{d T_{1}}{d t}=K\left(T_{1}-T_{s}\right) \\
\frac{d T_{2}}{d t}=K\left(T_{2}-T_{s}\right) \\
\frac{T_{1}-T_{2}}{\Delta t}=C\left[\frac{T_{1}+T_{2}}{2}-T_{o}\right] \\
\frac{3 T-2 T}{10}=C\left[\frac{3 T+2 T}{2}-T\right] \\
\frac{T}{10}=C\left[\frac{3 T}{2}\right]
\end{gathered}
$$

$$
C=2 / 30
$$

x be the temperature of the body

$$
\begin{aligned}
{\left[\frac{2 T-x}{10}\right.} & =\frac{2}{30}\left(\frac{2 T+x}{2}-T\right) \\
& =2 / 30(x / 2) \\
& x=3 T / 2
\end{aligned}
$$

14.Ans: A)

$$
\begin{aligned}
& \text { Slabs are in series } \\
& \begin{array}{l}
\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2} \\
\begin{aligned}
& 1 / A K_{e f f}=1 / A K_{e f f}-\frac{1}{A K}+\frac{1}{A 2 K} \\
& \quad=1 / K+1 / 2 K=\frac{3}{2} K \\
& \\
& \text { Keff }=\frac{2 K}{3}
\end{aligned}
\end{array}
\end{aligned}
$$

15.Ans:C)

$$
\begin{aligned}
& E=\sigma A T^{4} \\
& \frac{E_{1}}{E_{2}}=\frac{r_{1}^{2} T_{1}^{4}}{r_{2}^{2} \times T_{2}^{4}} \\
& =\frac{(0.12)^{2} \times 500^{4}}{(0.06)^{2} \times(1000)^{4}} \\
& =1800 \mathrm{~W}
\end{aligned}
$$

