

DIRECTORATE OF SCHOOL EDUCATION TAMILNADU

Answer key

12 TH Physics

1. Ans: C)

Intensity is directly proportional to the square of amplitude $I \propto A^2$

$$
I_1 \propto A_1^2, I_2 \propto A_2^2
$$

$$
\frac{I_1}{I_2} = \frac{A_1^2}{A_2^2}
$$

$$
\frac{A_1}{A_2} = \sqrt{\frac{I_1}{I_2}}
$$

Let the Intensity of individual Sources be I_1 and I_2 The net intensity,

$$
I_{net} = I_1 + I_2 + 2\sqrt{I_1} \sqrt{I_2} \cos \phi
$$

$$
I_{max} = \left(\sqrt{I_1} \sqrt{I_2}\right)^2
$$

Given

$$
\frac{I_{\text{max}}}{I_{\text{mix}}} = \frac{36}{16}
$$
\n
$$
\frac{\left(\sqrt{I_1} + \sqrt{I_2}\right)^2}{\left(\sqrt{I_1} - \sqrt{I_2}\right)^2} = \frac{36}{16}
$$
\n
$$
\frac{\left(\sqrt{I_1} + \sqrt{I_2}\right)}{\left(\sqrt{I_1} - \sqrt{I_2}\right)} = \frac{6}{4}
$$

 $4\sqrt{I_1} + 4\sqrt{I_2} = 6\sqrt{I_1} - 6\sqrt{I_2}$

$$
10\sqrt{I_2} = 2\sqrt{I_1}
$$

$$
5\sqrt{I_2} = \sqrt{I_1}
$$

$$
\frac{\sqrt{I_1}}{\sqrt{I_2}} = \frac{5}{1}
$$

2. Ans: A) 20 cm

$$
y_1 = 10\sin(wt + \frac{\pi}{3})
$$

\n
$$
y_2 = 5 \times 2 \frac{\sqrt{3}}{2} \cos wt + \frac{1}{2} \sin wt) + 10(\cos wt \times \frac{\sqrt{3}}{2} + \frac{1}{2} \sin wt)
$$

\n
$$
y_2 = 10\sin(wt + \frac{\pi}{3})[\sin(A + B)]
$$

\n
$$
y_2 = 10\sin(wt + \frac{\pi}{3})[\sin(A + B)]
$$

\n
$$
Y_{net} = y_1 + y_2
$$

\n
$$
= 10\sin(wt + \frac{\pi}{3}) + 10\sin(wt + \frac{\pi}{3}) = 20\sin \theta = \sin(wt + \frac{\pi}{3})
$$

\nSo the net amplitude of the wave = A = 20 cm

3. Ans: B) 2

$$
\frac{I_1}{I_2} = \frac{1}{4}
$$
\n
$$
I_{max} = I_1 + I_2 + \sqrt{I_1}\sqrt{I_2}
$$
\n
$$
I_{max} = I_1 + 4I_1 + 2\sqrt{I_1 \times 4I_1} = 9I_1
$$
\n
$$
I_{min} = I_1 + 4I_1 - 2\sqrt{I_1 \times 4I_1} = I_1
$$
\n
$$
\frac{I_{max} + I_{mid}}{I_{max} - I_{mid}} = \frac{9I_1 + I_1}{9I_1 - I_1} = \frac{10I_1}{8I_1} = \frac{10}{8I_1}
$$
\n
$$
\frac{2\alpha + 1}{\beta + 3} = \frac{5}{4}
$$
\n
$$
2\alpha + 1 = 5
$$
\n
$$
2\alpha = 4
$$
\n
$$
\alpha = 2
$$
\n
$$
\alpha = 2
$$
\n
$$
\frac{\alpha}{\beta} = \frac{2}{1} = 2
$$
\n
$$
\frac{\alpha}{\beta} = \frac{2}{1} = 2
$$

4. Ans: A)

Position of nth maxima from central maximum

$$
X_n = \frac{n\lambda D}{d}
$$

$$
xn \propto n\lambda
$$

\n
$$
n_1\lambda_1 \propto d_1 \implies 6\lambda_1 \propto d_1
$$

\n
$$
n_2\lambda_2 \propto d_2 \implies 4\lambda_2 \propto d_2
$$

\n
$$
\frac{d_1}{d_2} = \frac{6\lambda_1}{4\lambda_2} = \frac{3\lambda_1}{2\lambda_2}
$$

\n
$$
\frac{d_1}{d_2} = \frac{3\lambda_1}{2\lambda_2}
$$

5. Ans: B)

Fringe width (β) = *D d* λ From question nDA_1 $(n+1)DA_2$ *d d* $\frac{\lambda_1}{n} = \frac{(n+1)D\lambda_2}{n}$ $n\lambda_1 = (n+1)\lambda_2$ 2 1 λ_1 *n n* λ $\frac{1}{+1} = \frac{1}{\lambda}$ 1 2 $n+1$ *n* λ . λ $+1 =$ 2 $n = \frac{\lambda_2}{\lambda_2}$ $=\frac{1}{\lambda_1-\lambda_2}$

 $1 \t2$

6. Ans: B) 100 nm

Refraction under $(\mu) = 1.33$ λ = 532 nm = 532 × 10⁻⁹ m $2\mu t = (n - \frac{1}{2})\lambda = (2n - 1)\frac{\lambda}{2}$ For minimum thickness, $n = 1$ $2 \mu t = (1 - \frac{1}{2})\lambda$ $2 \times 1.33 = (1 - \frac{1}{2})\lambda$ $t = \frac{\lambda}{2 \times 2 \times 1.33}$ 532×10^{-9} 532 $\times10^{-9}$ $=\frac{532\times10^{-9}}{2}=\frac{532\times10^{-7}}{2}$

$$
t = \frac{4 \times 1.33}{4 \times 1.33} = \frac{5.32}{5.32}
$$

$$
t = 100 \times 10^{-9} m
$$

$$
t = 100 nm
$$

7. Ans: A) *λ = 500 nm = 500 × 10-9 m D = 1.8 m, d = 0.4 mm = 0.4 × 10-3 m* Speed $(u) = 4$ ms⁻¹ $B = \frac{\lambda D}{\lambda}$ *d* $=\frac{\lambda}{\lambda}$ on differentiating both sider, *dB dD* $\frac{dE}{dt} = \lambda \frac{dE}{dt}$

$$
V_B = \frac{500 \times 10^{-9}}{4 \times 10^{-4}} \times 4
$$

\n
$$
V_B = 5 \times 10^{-3} \text{ ms}^{-1}
$$

\n
$$
V_B = 5 \text{ mm/s}
$$

8. Ans: B) 450 nm $d = 0.6$ mm = 6×10^{-4} m $D = 80$ cm = 0.8 m $y = \frac{d}{2}$ *d* For first dark fringe $Δx = γ \frac{d}{dz}$ *D* $\Delta x = (dn - 1) \frac{\lambda}{2}$ 2 $2 - 2$ $D - 2$ *d d d D D* $\lambda/2 = \frac{a}{2} \times \frac{a}{D} = \frac{a}{2D}$ $\Delta x = \lambda/2$ $(n=1)$ $2 / (6 \times 10^{-4})^2$ 2 *d* $\lambda = d^2 / D = \frac{(6 \times 10^{-14})}{2D}$ $\lambda = 45 \times 10^{-8} m$

λ.

$$
\lambda = 450nm
$$

9. Ans: C) 2089 J By first law of thermo dynamics $\Delta Q = \Delta u + \Delta w$ $mL = -\Delta u + p$ (V_{steam} – V_{water}) $1 \times 2256 = \Delta u + 10^5 (1671 - 1) 10^{-6}$ $2256 = \Delta u + 167$ $\Delta u = 2089$ J

10. Ans: A) 236.5W
\n
$$
\frac{Q_2}{W} = \frac{T_2}{T_1 - T_2}
$$
\nHere T² = 4°C = 277K
\nT₁ = 303 K
\nQ₂ = 600 Cal
\n
$$
\frac{600}{w} = \frac{277}{303 - 277}
$$
\n
$$
w = \frac{600}{10.65} = 56.33Cal
$$
\n
$$
P = \frac{w}{t} = \frac{56.33}{1} \times 4.2
$$
\nP = 236.5 W

11.Ans: A) 560 J

Since internal change is a state function eh change in internal energy during the process AC will be same as that of during the process AB and BC.

Total work done = W_{AB} + W_{BC} $= 0 + P_B (V_C - V_A)$ (: $V_B = V_A$) $= 8 \times 10^4 \left[(5-2) \times 10^{-3} \right]$ $W = 240 J$

Total heat supplied to the system $600 + 200 = 800$ J $dV = dQ - dW = 800 - 240$ $dV = 560$ J

12.Ans: C)

Work done by the gas is negative For isothermal process, $du = 0$

$$
W = nRT \log_e \left(\frac{V_2}{V_1}\right)
$$

$$
W = nRT \log_e \left(\frac{1}{2}\right)
$$

$$
\Rightarrow W < 0
$$

13.Ans: B) $2\sqrt{2} = 1:2$

Let P_A , P_B and P_C be the initial pressure and P be the final pressure

For A,

The process is adiabatic

$$
\therefore P_A(V)^{3/2} = P(2V)^{3/2}, \quad P_A = P_2^{3/2}
$$

For B

the process is isobaric $PB = P$

For C,

the process is isothermal $P_c(v) = P(2v), P_c = 2P$

Hence

$$
P_A : P_B : P_C = 2^{3/2} : 1 : 2 = 2\sqrt{2} : 1 : 2
$$

14.Ans: D) 73.25 K

Since gas is suddenly expanded, it means the process is adiabatic process, then

Putting T₁ = 273 + 20 = 293K, v₂ = 8v₁
\n293(v₁)^{y-1} = T₂(8v₁)^{y-1}
\n293 = T₂8^{y-1}
\nT₂ =
$$
\frac{293}{8^{y-1}} = \frac{293}{8^{5/4}}
$$

\nT₂ = $\frac{293}{8^{2/3}} = \frac{293}{(2^3)^{2/3}} = \frac{293}{4}$
\nT₂ = 73.25 K

15. Ans: A)
$$
6.25 \times 10^5
$$
 J
\nHere $T_1 = 500$ K, $T_2 = 375$ K, $Q_1 = 25 \times 10^5$ J
\n
$$
\therefore \int = 1 - \frac{T_2}{T_1}
$$
\n
$$
= 1 - \frac{375}{500} = 0.25 = 25\%
$$
\n
$$
W = \int Q_1
$$
\n
$$
= 0.25 \times 25 \times 11^5
$$
\n
$$
W = 6.25 \times 10^5
$$

DIRECTORATE OF SCHOOL EDUCATION TAMILNADU

NEET PRACTICE QUESTIONS (TEST-14)

Class : XII Time : 1.15 hrs Total Marks : 240

Answer key

11 TH - Physics

1. Ans: C) 2089 J By first law of thermo dynamics $\Delta Q = \Delta u + \Delta w$ $mL = -\Delta u + p (V_{\text{steam}} - V_{\text{water}})$ $1 \times 2256 = \Delta u + 10^5 (1671 - 1) 10^{-6}$ $2256 = \Delta u + 167$ $\Delta u = 2089$ J

2. Ans: A) 236.5W

2 $-$ 2 1 \cdot 2 *Q T* $\frac{1}{W} = \frac{T_1 - T_2}{T_1 - T_2}$ Here $T^2 = 4^{\circ}C = 277K$ $T_1 = 303 K$ Q_2 = 600 Cal 600 277 $\frac{1}{w} = \frac{1}{303 - 277}$ $w = \frac{600}{10.65} = 56.33$ $\frac{1000}{10.65}$ =56.33*Cal* $\frac{56.33}{2} \times 4.2$ 1 *w P* $=\frac{}{t}=\frac{}{1}$ \times $P = 236.5 W$

3. Ans: A) 560 J

Since internal change is a state function eh change in internal energy during the process AC will be same as that of during the process AB and BC.

Total work done =
$$
W_{AB} + W_{BC}
$$

= 0 + P_B (V_C - V_A) (:: V_B = V_A)
= 8 × 10⁴ [(5-2) × 10⁻³]
W = 240 J

Total heat supplied to the system
\n
$$
600 + 200 = 800
$$
 J
\n $dV = dQ - dW = 800 - 240$
\n $dV = 560$ J

4. Ans: C)

Work done by the gas is negative For isothermal process, $du = 0$

$$
W = nRT \log_e \left(\frac{V_2}{V_1}\right)
$$

$$
W = nRT \log_e \left(\frac{1}{2}\right)
$$

$$
\Rightarrow W < 0
$$

5. Ans: B) $2\sqrt{2} = 1:2$

Let P_A , P_B and P_C be the initial pressure and P be the final pressure

For A,

The process is adiabatic

$$
\therefore P_A(V)^{\frac{3}{2}} = P(2V)^{\frac{3}{2}}, \quad P_A = P_2^{\frac{3}{2}}
$$

For B

the process is isobaric $PB = P$

For C,

the process is isothermal

 $P_c(v) = P(2v), P_c = 2P$

Hence

$$
P_A : P_B : P_C = 2^{3/2} : 1 : 2 = 2\sqrt{2} : 1 : 2
$$

6. Ans: D) 73.25 K

Since gas is suddenly expanded, it means the process is adiabatic process, then

Putting T₁ = 273 + 20 = 293K, v₂ = 8v₁
\n293(v₁)^{v-1} = T₂(8v₁)^{v-1}
\n293 = T₂ 8^{v-1}
\nT₂ =
$$
\frac{293}{8^{v-1}} = \frac{293}{8^{5/4}}
$$

\nT₂ = $\frac{293}{8^{2/3}} = \frac{293}{(2^3)^{2/3}} = \frac{293}{4}$
\nT₂ = 73.25 K

7. Ans: A)
$$
6.25 \times 10^5
$$
 J
\nHere $T_1 = 500$ K, $T_2 = 375$ K, $Q_1 = 25 \times 10^5$ J
\n
$$
\therefore \int = 1 - \frac{T_2}{T_1}
$$
\n
$$
= 1 - \frac{375}{500} = 0.25 = 25\%
$$
\n
$$
W = \int Q_1
$$
\n
$$
= 0.25 \times 25 \times 11^5
$$
\n
$$
W = 6.25 \times 10^5
$$

8. Ans: C)
$$
6.27 \times 10^5
$$
 Col
\nHere $Q_1 = 900$ K Cal = 9×10^5 Cal
\n $T_1 = 723$ °C = $723 + 273 = 996$ K
\n $T_2 = 30$ °C = $30 + 273 = 303$ K
\n $\frac{Q_1}{Q_2} = \frac{T_1}{T_2}$
\n $Q_2 = \frac{T_1}{T_2} Q_1 = \frac{303}{996} \times 9 \times 10^5$
\n $Q_2 = 2.73 \times 10^5$ Cal
\nWork done w = $Q_1 - Q_2$
\n= $9 \times 10^5 - 2.73 \times 10^5$
\n= $(9 - 2.73) \times 10^5$
\nw = 6.27×10^5 cal

9. Ans: A) -2.70 × 10³ J
\n
$$
w = nRT \log \left(\frac{V_2}{V_1}\right) = P_0 V_0 ln \left(\frac{V_2}{V_1}\right)
$$
\n
$$
= 10^5 \times 10 \times 10^{-3} ln \left(\frac{1}{15}\right)
$$
\n
$$
W = -2.70 \times 10^3 J
$$

10. Ans: C) 5.76 J/K
\nHere P₁ = 1.0 × 10⁵ P_a
\nP₂ = 0.5 × 10⁵ P_a
\nn = 1 and R = 8.3 J mol⁻¹ K⁻¹
\nChange in entropy of the gas is
\n
$$
\Delta S = nR \ln \left(\frac{P_1}{P_2}\right)
$$
\n
$$
1 \times 8.3 \times \ln \left(\frac{1.0 \times 10^5}{0.5 \times 10^5}\right)
$$
\n
$$
8.3 \times ln(2)
$$
\n
$$
DS = 5.76 J/K
$$

11. Ans: B)
$$
\frac{3}{5}
$$

\nBy first law of thermo dynamics
\n $Q = v = w$
\n $= \frac{f}{2} nRt + p \int dv = \frac{f}{2} nRT + pv$
\nor $Q = \frac{f}{2} nRT + nRT$
\n $Q = \frac{3}{2} nRT + nRT = \frac{5}{2} nRT$

Fraction of heat energy supplied = $\frac{v}{\alpha}$ *Q*

$$
=\frac{(\frac{3}{2})nRT}{(\frac{5}{2})nRT}=\frac{3}{5}
$$

12. Ans: B) 1.16°C
\nH = 500 m, c = 4.2 kJ/kg = 4.2 × 10³ J / kg
\n
$$
\Delta v = mc\Delta T
$$

\n1 × 10 × 500 = 1 × 4.2 × 10³ × ΔT
\n $\Delta T = \frac{500 \times 10}{4.2 \times 10^3} = \frac{50}{42} = 1.19$ °C
\n $\Delta T = 1.16$ °C

13.Ans: B) ACBDA

Work done during the path ACB WACB = Area under the curve ACB o $V = axis (A₁)$ Work done during the path BDA WBDA = Area under the curve BDA on V-axis (A_2) Work done during the complete cycle is W_{ACB} – W_{BDA} = A_1 – A_2 = Area under the curve ACBDA

14.Ans: A)

76.34 cm Hg
For tiny glass tube

$$
P_1V_1 = P_2V_2
$$

 $P_2 = \frac{P_1V_1}{V_2} = \frac{4.5 \times 0.5}{500} = 0.0045$ atm
Thus, P = 1 atm + 0.0045 atm
= 1.0045 atm
= 76.34 cm Hg

15.Ans: D) $L - P (V_2 - V_1)$ *Q = mL = 1× L = L* $W = P (V_2 - V_1)$ *Now Q* = Δv *+ w Or* $L = ∆v + P(V_2 - V_1)$ *∆v = L – P (V² – V1)*

DIRECTORATE OF SCHOOL EDUCATION TAMILNADU

Answer key

12 TH - Physics

1. Ans: C)

Intensity is directly proportional to the square of amplitude $I \propto A^2$

$$
I_1 \propto A_1^2, I_2 \propto A_2^2
$$

\n
$$
\frac{I_1}{I_2} = \frac{A_1^2}{A_2^2}
$$

\n
$$
\frac{A_1}{A_2} = \sqrt{\frac{I_1}{I_2}}
$$

Let the Intensity of individual Sources be I_1 and I_2 The net intensity,

$$
I_{net} = I_1 + I_2 + 2\sqrt{I_1} \sqrt{I_2} \cos \phi
$$

$$
I_{max} = \left(\sqrt{I_1} \sqrt{I_2}\right)^2
$$

Given

$$
\frac{I_{\text{max}}}{I_{\text{mic}}} = \frac{36}{16}
$$
\n
$$
\frac{\left(\sqrt{I_1} + \sqrt{I_2}\right)^2}{\left(\sqrt{I_1} - \sqrt{I_2}\right)^2} = \frac{36}{16}
$$
\n
$$
\frac{\left(\sqrt{I_1} + \sqrt{I_2}\right)}{\left(\sqrt{I_1} - \sqrt{I_2}\right)} = \frac{6}{4}
$$

 $4\sqrt{I_1} + 4\sqrt{I_2} = 6\sqrt{I_1} - 6\sqrt{I_2}$

$$
10\sqrt{I_2} = 2\sqrt{I_1}
$$

$$
5\sqrt{I_2} = \sqrt{I_1}
$$

$$
\frac{\sqrt{I_1}}{\sqrt{I_2}} = \frac{5}{1}
$$

2. Ans: A) 20 cm

$$
y_1 = 10\sin(wt + \frac{\pi}{3})
$$

\n
$$
y_2 = 5 \times 2 \frac{\sqrt{3}}{2} \cos wt + \frac{1}{2} \sin wt) + 10(\cos wt \times \frac{\sqrt{3}}{2} + \frac{1}{2} \sin wt)
$$

\n
$$
y_2 = 10\sin(wt + \frac{\pi}{3})[\sin(A + B)]
$$

\n
$$
y_2 = 10\sin(wt + \frac{\pi}{3})[\sin(A + B)]
$$

\n
$$
Y_{net} = y_1 + y_2
$$

\n
$$
= 10\sin(wt + \frac{\pi}{3}) + 10\sin(wt + \frac{\pi}{3}) = 20\sin \theta = \sin(wt + \frac{\pi}{3})
$$

\nSo the net amplitude of the wave = A = 20 cm

3. Ans: B) 2

$$
\frac{I_1}{I_2} = \frac{1}{4}
$$
\n
$$
I_{\text{max}} = I_1 + I_2 + \sqrt{I_1} \sqrt{I_2}
$$
\n
$$
I_{\text{max}} = I_1 + 4I_1 + 2\sqrt{I_1 \times 4I_1} = 9I_1
$$
\n
$$
I_{\text{max}} = I_1 + 4I_1 - 2\sqrt{I_1 \times 4I_1} = I_1
$$
\n
$$
\frac{I_{\text{max}} + I_{\text{max}}}{I_{\text{max}} - I_{\text{max}}} = \frac{9I_1 + I_1}{9I_1 - I_1} = \frac{10I_1}{8I_1} = \frac{10}{8}
$$
\n
$$
\frac{2\alpha + 1}{\beta + 3} = \frac{5}{4}
$$
\n
$$
2\alpha + 1 = 5
$$
\n
$$
2\alpha = 4
$$
\n
$$
2\alpha = 4
$$
\n
$$
\beta + 3 = 4
$$
\n
$$
\alpha = 2
$$
\n
$$
\frac{\alpha}{\beta} = \frac{2}{1} = 2
$$
\n
$$
\beta = 1
$$

4. Ans: A)

Position of nth maxima from central maximum

$$
X_n = \frac{n\lambda D}{d}
$$

\n
$$
xn \propto n\lambda
$$

\n
$$
n_1\lambda_1 \propto d_1 \implies 6\lambda_1 \propto d_1
$$

\n
$$
n_2\lambda_2 \propto d_2 \implies 4\lambda_2 \propto d_2
$$

\n
$$
\frac{d_1}{d_2} = \frac{6\lambda_1}{4\lambda_2} = \frac{3\lambda_1}{2\lambda_2}
$$

\n
$$
\frac{d_1}{d_2} = \frac{3\lambda_1}{2\lambda_2}
$$

5. Ans: B)

Fringe width (β) = *D d* λ From question nDA_1 $(n+1)DA_2$ *d d* $\frac{\lambda_1}{n} = \frac{(n+1)D\lambda_2}{n}$ $n\lambda_1 = (n+1)\lambda_2$ 2 1 λ ₁ *n n* λ $\frac{1}{+1} = \frac{1}{\lambda}$ 1 2 $n+1$ *n* λ λ $+1 =$ 2 $1 \t2$ $n = \frac{\lambda_2}{\lambda_2}$ $=\frac{1}{\lambda_1-\lambda_2}$

6. Ans: B) 100 nm

Refraction under $(\mu) = 1.33$ $λ = 532$ nm = $532 × 10⁻⁹$ m $2\mu t = (n - \frac{1}{2})\lambda = (2n - 1)\frac{\lambda}{2}$ For minimum thickness, $n = 1$ $2 \mu t = (1 - \frac{1}{2})\lambda$ $2 \times 1.33 = (1 - \frac{1}{2})\lambda$ $t = \frac{\lambda}{2 \times 2 \times 1.33}$ 532×10^{-9} 532 $\times10^{-9}$ $t = \frac{}{4 \times 1.33} = \frac{}{5.32}$ $=\frac{532\times10^{-9}}{2}=\frac{532\times10^{-7}}{2}$ × *t = 100 × 10-9 m t = 100 nm*

7. Ans: A)
\n
$$
\lambda = 500 \text{ nm} = 500 \times 10^{-9} \text{ m}
$$
\n
$$
D = 1.8 \text{ m}, d = 0.4 \text{ mm} = 0.4 \times 10^{-3} \text{ m}
$$
\nSpeed (u) = 4 ms⁻¹
\n
$$
B = \frac{\lambda D}{d}
$$
\non differentiating both sider,
\n
$$
\frac{dB}{dt} = \lambda \frac{dD}{dt}
$$
\n
$$
V_B = \frac{500 \times 10^{-9}}{4 \times 10^{-4}} \times 4
$$
\n
$$
V_B = 5 \times 10^{-3} \text{ ms}^{-1}
$$
\n
$$
V_B = 5 \text{ mm/s}
$$

8. Ans: B) 450 nm

 $d = 0.6$ mm = 6×10^{-4} m $D = 80$ cm = 0.8 m $y = \frac{d}{2}$ *d* For first dark fringe $Δx = γ \frac{d}{dz}$ *D* 2

 2^- 2 $^{\circ}$ D $2^$ *d d d*

 $\lambda = \frac{d^2}{D} = \frac{(6 \times 10^{-14} \text{ J})^2}{2D}$

 $\lambda = 45 \times 10^{-8} m$

d

 $\lambda = 450$ *nm*

D D

 $\frac{2}{7}$ $(6\times10^{-4})^2$ 2

$$
\Delta x = \gamma \frac{a}{D} \qquad \Delta x = (\text{dn} - 1) \frac{\lambda}{2}
$$

$$
\lambda \frac{d}{2} = \frac{d}{2} \times \frac{d}{D} = \frac{d^2}{2D} \qquad \Delta x = \lambda \frac{d}{2} \quad (n = 1)
$$

9. Ans: C) 2089 J By first law of thermo dynamics $\Delta Q = \Delta u + \Delta w$ $mL = \Delta u + p$ (V_{steam} – V_{water}) $1 \times 2256 = \Delta u + 10^5 (1671 - 1) 10^{-6}$ $2256 = \Delta u + 167$ $\Delta u = 2089$ J

10.Ans: A) 236.5W

$$
\frac{Q_2}{W} = \frac{T_2}{T_1 - T_2}
$$

Here T² = 4°C = 277K
T₁ = 303 K
Q₂ = 600 Cal

$$
\frac{600}{w} = \frac{277}{303 - 277}
$$

$$
w = \frac{600}{10.65} = 56.33Cal
$$

$$
P = \frac{w}{t} = \frac{56.33}{1} \times 4.2
$$

$$
P = 236.5 W
$$

11.Ans: A) 560 J

Since internal change is a state function eh change in internal energy during the process AC will be same as that of during the process AB and BC.

Total work done =
$$
W_{AB} + W_{BC}
$$

\n= 0 + P_B (V_C - V_A) (:: V_B = V_A)
\n= 8 × 10⁴ [(5-2) × 10⁻³]
\nW = 240 J

Total heat supplied to the system
\n
$$
600 + 200 = 800
$$
 J
\n $dV = dQ - dW = 800 - 240$
\n $dV = 560$ J

12.Ans: C)

Work done by the gas is negative For isothermal process, $du = 0$

$$
W = nRT \log_e \left(\frac{V_2}{V_1}\right)
$$

$$
W = nRT \log_e \left(\frac{1}{2}\right)
$$

$$
\Rightarrow W < 0
$$

13.Ans: B) $2\sqrt{2} = 1:2$

Let P_A , P_B and P_C be the initial pressure and P be the final pressure

For A,

The process is adiabatic

 $\therefore P_A(V)^{3/2} = P(2V)^{3/2}, P_A = P_2^{3/2}$

For B

the process is isobaric $PB = P$

For C,

the process is isothermal $P_c(v) = P(2v), P_c = 2P$

Hence

$$
P_A : P_B : P_C = 2^{3/2} : 1 : 2 = 2\sqrt{2} : 1 : 2
$$

14.Ans: D) 73.25 K

Since gas is suddenly expanded, it means the process is adiabatic process, then

Putting T₁ = 273 + 20 = 293K, v₂ = 8v₁
\n
$$
293(v1)v-1 = T2(8v1)y-1
$$
\n
$$
293 = T28y-1
$$
\n
$$
T2 = \frac{293}{8y-1} = \frac{293}{85/3-1}
$$
\n
$$
T2 = \frac{293}{82/3} = \frac{293}{(23)2/3} = \frac{293}{4}
$$
\n
$$
T2 = 73.25 K
$$

15. Ans: A) 6.25 × 10⁵ J
\nHere T₁ = 500 K, T₂ = 375K, Q₁ = 25 × 10⁵ J
\n∴
$$
\int = 1 - \frac{T_2}{T_1}
$$

\n $= 1 - \frac{375}{500} = 0.25 = 25\%$
\nW = $\int Q_1$
\n= 0.25 × 25 × 11⁵
\nW = 6.25 × 10⁵ J

DIRECTORATE OF SCHOOL EDUCATION TAMILNADU

Answer key

11 TH - Physics

1. Ans: C) 2089 J By first law of thermo dynamics $\Delta Q = \Delta u + \Delta w$ $mL = -\Delta u + p$ (V_{steam} – V_{water}) $1 \times 2256 = \Delta u + 10^5 (1671 - 1) 10^{-6}$ $2256 = \Delta u + 167$ $\Delta u = 2089$ J

2. Ans: A) 236.5W

2 2 1 2 *Q T* $\frac{1}{W} = \frac{1}{T_1 - T_2}$ Here $T^2 = 4^{\circ}C = 277K$ T_1 = 303 K Q_2 = 600 Cal 600 277 $\frac{1}{w} = \frac{1}{303 - 277}$ $w = \frac{600}{10.65} = 56.33$ $\frac{1000}{10.65}$ =56.33*Cal* $\frac{56.33}{2} \times 4.2$ 1 *w P* $=\frac{}{t}=\frac{}{1}$ \times $P = 236.5 W$

3. Ans: A) 560 J

Since internal change is a state function eh change in internal energy during the process AC will be same as that of during the process AB and BC.

Total work done =
$$
W_{AB} + W_{BC}
$$

\n= 0 + $P_B (V_C - V_A)$ ($\therefore V_B = V_A$)
\n= 8 × 10⁴ [(5-2) × 10⁻³]
\nW = 240 J

Total heat supplied to the system
\n
$$
600 + 200 = 800
$$
 J
\n
$$
dV = dQ - dW = 800 - 240
$$

\n
$$
dV = 560
$$
 J

4. Ans: C)

Work done by the gas is negative For isothermal process, $du = 0$

$$
W = nRT \log_e \left(\frac{V_2}{V_1}\right)
$$

$$
W = nRT \log_e \left(\frac{1}{2}\right)
$$

$$
\Rightarrow W < 0
$$

5. Ans: B) $2\sqrt{2} = 1:2$

Let P_A , P_B and P_C be the initial pressure and P be the final pressure

For A,

The process is adiabatic

$$
\therefore P_A(V)^{3/2} = P(2V)^{3/2}, \quad P_A = P_2^{3/2}
$$

For B

the process is isobaric $PB = P$

For C,

the process is isothermal $P_c(v) = P(2v), P_c = 2P$

Hence

$$
P_A : P_B : P_C = 2^{3/2} : 1 : 2 = 2\sqrt{2} : 1 : 2
$$

6. Ans: D) 73.25 K

Since gas is suddenly expanded, it means the process is adiabatic process, then

Putting T₁ = 273 + 20 = 293K, v₂ = 8v₁
\n293(v₁)^{v-1} = T₂(8v₁)^{y-1}
\n293 = T₂ 8^{y-1}
\nT₂ =
$$
\frac{293}{8^{y-1}} = \frac{293}{8^{5/4}}
$$

\nT₂ = $\frac{293}{8^{2/3}} = \frac{293}{(2^3)^{2/3}} = \frac{293}{4}$
\nT₂ = 73.25 K

7. Ans: A)
$$
6.25 \times 10^5
$$
 J
\nHere $T_1 = 500$ K, $T_2 = 375$ K, $Q_1 = 25 \times 10^5$ J
\n
$$
\therefore \int = 1 - \frac{T_2}{T_1}
$$
\n
$$
= 1 - \frac{375}{500} = 0.25 = 25\%
$$
\n
$$
W = \int Q_1
$$
\n
$$
= 0.25 \times 25 \times 11^5
$$
\n
$$
W = 6.25 \times 10^5
$$

8. Ans: C)
$$
6.27 \times 10^5
$$
 Col
\nHere $Q_1 = 900$ K Cal = 9×10^5 Cal
\n $T_1 = 723^{\circ}$ C = 723 + 273 = 996 K
\n $T_2 = 30^{\circ}$ C = 30 + 273 = 303 K
\n $\frac{Q_1}{Q_2} = \frac{T_1}{T_2}$
\n $Q_2 = \frac{T_1}{T_2} Q_1 = \frac{303}{996} \times 9 \times 10^5$
\n $Q_2 = 2.73 \times 10^5$ Cal
\nWork done w = $Q_1 - Q_2$
\n= $9 \times 10^5 - 2.73 \times 10^5$
\n= $(9 - 2.73) \times 10^5$
\nw = 6.27×10^5 cal

9. Ans: A) *-2.70 × 10³ J*

$$
w = nRT \log \left(\frac{V_2}{V_1}\right) = P_o V_o l \ln \left(\frac{V_2}{V_1}\right)
$$

$$
= 10^5 \times 10 \times 10^{-3} \ln \left(\frac{1}{15}\right)
$$

$$
W = -2.70 \times 10^3 J
$$

10. Ans: C) 5.76 J/K
\nHere P₁ = 1.0 × 10⁵ P_a
\nP₂ = 0.5 × 10⁵ P_a
\nn = 1 and R = 8.3 J mol⁻¹ K⁻¹
\nChange in entropy of the gas is
\n
$$
\Delta S = nR \ln \left(\frac{P_1}{P_2} \right)
$$
\n
$$
1 \times 8.3 \times \ln \left(\frac{1.0 \times 10^5}{0.5 \times 10^5} \right)
$$
\n
$$
8.3 \times ln(2)
$$
\n
$$
DS = 5.76 J/K
$$

11. Ans: B)
$$
\frac{3}{5}
$$

\nBy first law of thermo dynamics
\n $Q = v = w$
\n $= \frac{f}{2} nRt + p \int dv = \frac{f}{2} nRT + pv$
\nor $Q = \frac{f}{2} nRT + nRT$
\n $Q = \frac{3}{2} nRT + nRT = \frac{5}{2} nRT$

Fraction of heat energy supplied = $\frac{v}{\alpha}$ *Q*

$$
=\frac{(\frac{3}{2})nRT}{(\frac{5}{2})nRT}=\frac{3}{5}
$$

12. Ans: B) 1.16˚C

H = 500 m, c = 4.2 kJ/kg = 4.2 × 10³ J / kg
\n
$$
\Delta v = mc\Delta T
$$

\nmgh = mc ΔT
\n1 × 10 × 500 = 1 × 4.2 × 10³ × ΔT
\n
$$
\Delta T = \frac{500 \times 10}{4.2 \times 10^3} = \frac{50}{42} = 1.19
$$
°C
\n
$$
\Delta T = 1.16
$$
°C

13. Ans: B) ACBDA

Work done during the path ACB W_{ACB} = Area under the curve ACB o $V = axis(A₁)$ Work done during the path BDA W_{BDA} = Area under the curve BDA on V-axis (A_2) Work done during the complete cycle is W_{ACB} – W_{BDA} = A_1 – A_2 = Area under the curve ACBDA

14. Ans: A)

76.34 cm Hg For tiny glass tube $P_1V_1 = P_2V_2$ $P_2 = \frac{I_1 V_1}{V_1}$ 2 $\frac{4.5 \times 0.5}{2} = 0.0045$ 500 $\frac{P_1 V_1}{P_1} = \frac{4.5 \times 0.5}{0.0045} = 0.0045$ *V* $=\frac{4.5\times0.5}{4.0\times0.5}=$ Thus, $P = 1$ atm + 0.0045 atm = 1.0045 atm = 76.34 cm Hg

15. Ans: D)

$$
L - P (V_2 - V_1)
$$

$$
Q = mL = 1 \times L = L
$$

\n
$$
W = P (V_2 - V_1)
$$

\nNow $Q = \Delta v + w$
\n
$$
Or L = \Delta v + P(V_2 - V_1)
$$

\n
$$
\Delta v = L - P (V_2 - V_1)
$$