| 12NPCBW2 |  |  |
| :---: | :---: | :---: |
| $(2023-24)$ | NEET - WEEKLY TEST 2 | Class : XII |
| Time : 1.40 hrs |  |  |
| Total Marks : 400 |  |  |

Answer key
12 ${ }^{\text {TH }}$ Physics

1. Ans : D) $8: 9$

Charge is conserved so,
$\mathrm{Q}_{1}+\mathrm{Q}_{2}=\mathrm{Q}_{3}+\mathrm{Q}_{4}$
$Q_{1}$ and $Q_{2}$ are initial charges and $Q_{3}$ and $Q_{4}$ are charges after connecting them
$\mathrm{Q}_{3}=\mathrm{Q}_{4}=\mathrm{Q}$ (they are identical)
So, $\mathrm{Q}=\frac{10+20}{2}=15 \mathrm{C}$
Ratio of forces $=\mathrm{K}(10)(20): \mathrm{K}(15)(15)$
Ratio of forces $=8: 9$
2. Ans : D) $\mathbf{1 8 0} \mathrm{ms}^{-1}$

Using law of conservation of energy
$\mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\mathrm{f}}$
$K \frac{q_{1} q}{r_{1}}=K \frac{q_{1} q}{r_{2}}+\frac{1}{2} m v^{2}$
$\frac{1}{2} m v^{2}=\mathrm{Kq}_{1} \mathrm{q}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)$

$$
\begin{aligned}
& \mathrm{v}^{2}=2 \times \frac{K q_{1} q}{m}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \\
& \mathrm{v}^{2}=2 \times \frac{9 \times 10^{9} \times 2 \times 10^{-3} \times 1 \times 10^{-6}}{1 \times 10^{-3}}\left(\frac{1}{1}-\frac{1}{10}\right) \\
& \mathrm{v}^{2}=36 \times 900 \\
& \mathrm{v}=\sqrt{36 \times 900}=6 \times 30=180 \mathrm{~ms}^{-1}
\end{aligned}
$$

## 3. Ans: A) $3.47 \times 10^{4} \mathrm{C}$

Mass of coin $=0.75 \mathrm{~g}$

Atomic mass of aluminium - 26.98 g
Number of Al atoms in the coin $\mathrm{N}=\frac{6.02 \times 10^{23}}{26.98} \times 0.75=1.67 \times 10^{22}$
As charge number $(\mathrm{z}) \mathrm{Al}$ is 13 , each atom of Al contains 13 protons and 13 electrons.

Magnitude of positive and negative charges in one paisa coin

$$
\begin{aligned}
& =\mathrm{NZe}=1.67 \times 10^{22} \times 13 \times 1.6 \times 10^{-19} \\
& =3.47 \times 10^{4} \mathrm{C}
\end{aligned}
$$

## 4. Ans : B) $1.36 \times 10^{4} \mathrm{Nm}^{2} \mathrm{C}^{-1}$

$\mathrm{r}=10 \mathrm{~cm}=0.1 \mathrm{~m}$
$\mathrm{E}=5 \times 10^{5} \mathrm{NC}^{-1}$
As the angle between the plane sheet and the electric fields is $60^{\circ}$, angle made by the normal to the plane sheet and the electric field is $\theta=90^{\circ}-60^{\circ}=30^{\circ}$ $\phi_{\mathrm{E}}=\mathrm{Escos} \theta=\mathrm{Ex} \pi \mathrm{r}^{2} \cos \theta$

$$
\begin{aligned}
& \phi_{\mathrm{E}}=5 \times 10^{5} \times 3.14 \times 0.1^{2} \cos 30^{0} \\
& \phi_{\mathrm{E}}=1.36 \times 10^{4} \mathrm{Nm}^{2} \mathrm{C}^{-1}
\end{aligned}
$$

## 5. Ans : D) $10^{-9} \mathrm{C}$

Electric field of a point charge is $E=24 \mathrm{NC}^{-1}$
Electric potential of a point charge is $V=12 \mathrm{JC}^{-1}$
The distance PQ is $\mathrm{r}=\frac{V}{E}=\frac{12}{24}=0.5 \mathrm{~m}$
So magnitude of the charge $\quad q!=4 \Pi \epsilon_{0} V r$
$\mathrm{q}^{!}=\frac{1}{9 \times 10^{9}} \times 12 \times 0.5=0.667 \times 10^{-9} \mathrm{C}$
$\mathrm{q}^{!} \approx 10^{-9} \mathrm{C}$
6. Ans: C) $V_{a}=V_{c}>V_{b}=V_{d}$

$\mathrm{V}_{\mathrm{a}}$ due to $\mathrm{q}^{+}$charge $=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{(x-l)}$
$\mathrm{V}_{\mathrm{a}}$ due to $\mathrm{q}^{-}$charge $=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{(x+l)}$
$\mathrm{V}_{\mathrm{a} \text { Total }}=\frac{1}{4 \pi \varepsilon_{0}} \cdot\left\{\frac{1}{(x-l)}-\frac{1}{x+l}\right\}$
$\mathrm{V}_{\mathrm{a}}=\frac{q}{4 \pi \varepsilon_{0}} \cdot \frac{2 l}{\left(x^{2}-l^{2}\right)} \rightarrow \frac{2 q l}{4 \pi \varepsilon_{0} x^{2}}($ if $l \ll \mathrm{x}) \rightarrow \frac{p}{4 \pi \varepsilon_{0} x^{2}}$
$\mathrm{V}_{\mathrm{c} \text { Total }}=\frac{q}{4 \pi \varepsilon_{0}} \cdot\left\{-\frac{1}{(x-l)}+\frac{1}{x+l}\right\} \rightarrow-\frac{2 q l}{4 \pi \varepsilon_{0} x^{2}}($ if $l \ll \mathrm{x}) \rightarrow-\frac{p}{4 \pi \varepsilon_{0} x^{2}}$
$\mathrm{V}_{\mathrm{d} \text { Total }}=\frac{q}{4 \pi \varepsilon_{0}} \cdot\left\{\frac{1}{r}-\frac{1}{r}\right\}=0 \quad$ due to +q and -q charges
$\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{d}}$
So $V_{\mathrm{a}}=\mathrm{V}_{\mathrm{c}}>\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{d}}$
7. Ans: A) $\frac{1200}{7} \mathrm{pF}$

Capacitors $C_{2}$ and $C_{3}$ are connected in Series
So $\mathrm{C}_{23}=\frac{1}{200}+\frac{1}{200}=\frac{2}{400}=200 \mathrm{pF}$
Now $C_{1}$ and $C_{23}$ are Parallel

So $\mathrm{C}_{123}=100+200=300 \mathrm{pF}$
Now $C_{4}$ and $C_{123}$ are Series
Therefore $\frac{1}{C_{e q}}=\frac{1}{300}+\frac{1}{400}=\frac{7}{1200}$
$\mathrm{C}_{\mathrm{eq}}=\frac{1200}{7} \mathrm{pF}$

## 8. Ans: A) $8 \mu \mathrm{~J}$

Capacitors $6 \mu \mathrm{~F}$ and $3 \mu \mathrm{~F}$ are connected in series.
Equivalent capacitance $\mathrm{C}^{\prime}=\frac{3 \times 6}{3+6}=2 \mu \mathrm{~F}$
This is parallel with $2 \mu \mathrm{~F}$

Equivalent capacitance,
$\mathrm{C}=2+2=4 \mu \mathrm{~F}$
$\therefore$ Energy of the system,
$\mathrm{E}=\frac{1}{2} \mathrm{CV}^{2}=\frac{1}{2} \times 4 \times 2^{2}=8 \times 10^{-6 \mathrm{~J}}=8 \mu \mathrm{~J}$
9. Ans: C) $0,-2100 \mathrm{~V}$
(i) No work is done in moving a unit positive charge from A to B

Because the displacement of the charge is perpendicular to the electric field
Thus, the points $A$ and $B$ are at the same potential
Therefore $\Delta \mathrm{V}_{\mathrm{BA}}=0$
(ii) Work is done by the electric field as the positive charge moves from B to C

Thus, the point $C$ is at lower potential than the point $B$
As $\mathrm{E}=-\frac{\Delta V}{\Delta x}$
$\Delta V_{C B}=-\mathrm{E} \Delta x=-300 \times 7$
$\Delta V_{C B}=-2100 \mathrm{~V}$
10. Ans : B) $2.5 \times 10^{19} \mathrm{~m}^{-3}$

Here, $\rho=0.50 \Omega \mathrm{~m}$
$\mu_{\mathrm{e}}=0.39 \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$
$\mu_{\mathrm{h}}=0.11 \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$
The resistivity of intrinsic semiconductor is
$\frac{1}{\rho}=\mathrm{e}\left(\mathrm{n}_{\mathrm{i}} \mathrm{\mu}_{\mathrm{e}}+\mathrm{n}_{\mathrm{i}} \mu_{\mathrm{h}}\right)$
where $n_{i}$ is the intrinsic carrier concentration
$\therefore \mathrm{n}_{\mathrm{i}}=\frac{1}{\rho e(\mu e+\mu h)}$
Substituting the given values,
we get
$\mathrm{n}_{\mathrm{i}}=\frac{1}{0.5 \times 1.6 \times 10^{-19} \times(0.39+0.11)}$
$\mathrm{n}_{\mathrm{i}}=2.5 \times 10^{19} \mathrm{~m}^{-3}$
11. Ans: D) $6.72 \times 10^{-7} \mathrm{~A}$
$\mathrm{E}=\frac{V}{l}=\frac{2}{0.1}=20 \mathrm{~V} / \mathrm{m}$
$\mathrm{A}=1 \mathrm{~cm}^{2}=1 \times 10^{-4} \mathrm{~m}$
$\mathrm{V}_{\mathrm{d}}=\mu_{\mathrm{e}} \mathrm{E}=0.14 \times 20=2.8 \mathrm{~m} / \mathrm{s}$
$\mathrm{I}=\mathrm{neAV}_{\mathrm{d}}$
$I=1.5 \times 10^{16} \times 1.6 \times 10^{-19} \times 1 \times 10^{-4} \times 2.8$
$\mathrm{I}=6.72 \times 10^{-7} \mathrm{~A}$

## 12. C) $4 \times 10^{4}$ per $\mathrm{m}^{3}$

Here $n_{i}=6 \times 10^{8} \mathrm{~m}^{-3}$
$\mathrm{n}_{\mathrm{e}}=9 \times 10^{12} \mathrm{~m}^{-3}$
$\mathrm{n}_{\mathrm{h}}=\frac{n_{i}^{2}}{n_{e}}=\frac{\left(6 \times 10^{8}\right)^{2}}{9 \times 10^{12}}$
$\mathrm{n}_{\mathrm{h}}=4 \times 10^{4}$ per $\mathrm{m}^{3}$

## 13. Ans : B) $10 \Omega$

From the given curve we have

Voltage $\mathrm{V}=0.8 \mathrm{~V}$ for current $\mathrm{I}=20 \mathrm{~mA}$
Voltage $\mathrm{V}=0.7 \mathrm{~V}$ for current $\mathrm{I}=10 \mathrm{~mA}$
$\Delta I=(20-10)=10 \mathrm{~mA}=10 \times 10^{-3} \mathrm{~A}$
$\Delta V=(0.8-0.7)=0.1 \mathrm{~V}$
$\mathrm{R}=\frac{\Delta V}{\Delta I}=\frac{0.1}{10 \times 10^{-3}}$
$R=10 \Omega$
14. Ans : C) 36 V

Here input $\mathrm{V}_{\mathrm{rms}}=20 \mathrm{~V}$
Peak value of input voltage
$\mathrm{V}_{0}=\sqrt{2} \mathrm{~V}_{\mathrm{rms}}=\sqrt{2} \times 20=28.28 \mathrm{~V}$

Since the transformer is a setup transformer, having transformation ratio 1:2, the maximum value of output voltage of the transformer applied to the diode will be $\mathrm{V}_{1}=2 \times \mathrm{V}_{0}=2 \times 28.28=56.56 \mathrm{~V}$

DC voltage $=\frac{2 V_{1}}{\pi}=\frac{2 \times 56.56}{3.14}=36 \mathrm{~V}$
15. Ans : B) $20 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{C}}=\frac{V_{C E}}{R_{C}}=\frac{2}{2 \times 10^{3}}=10^{-3}=1 \mathrm{~mA}$ $\beta=\frac{I_{C}}{I_{B}}$
$\mathrm{I}_{\mathrm{B}}=\frac{I_{C}}{\beta}=\frac{10^{-3}}{50}=20 \mu \mathrm{~A}$
16. Ans: A) $\overline{\mathrm{A}} B+A \overline{\mathrm{~B}}$

The output of AND gate 1 is $\overline{\mathrm{A}} B$
The output of AND gate 2 is $A \overline{\mathrm{~B}}$
So the output of OR gate is $\mathrm{Y}=\overline{\mathrm{A}} B+A \overline{\mathrm{~B}}$

## 17. Ans: D) $5 \times 10^{14} \mathrm{~Hz}$

$\mathrm{p}-\mathrm{n}$ photodiode is a semiconductor diode that produces a significant current when illuminated. It is reversed biased but operated below the breakdown voltage.

Energy of radiation = Band gap energy
$\mathrm{E}=\mathrm{hv}=2 \mathrm{eV}$
Or $v=\frac{2 \times 1.6 \times 10^{-19}}{6.6 \times 10^{-34}} \approx 5 \times 10^{14} \mathrm{~Hz}$
18. Ans: B) $\frac{b}{a}$

Let a be the radius of sphere $A, Q_{A}$ be the charge on the sphere $A$ and $C_{A}$ be the capacitance of sphere A.

Let $b$ be the radius of sphere $B, Q_{B}$ be the charge on the sphere $B$ and $C_{B}$ be the capacitance of sphere B.

Since the spheres are connected by their potential (V) will become equal

Let $E_{A}$ be the electric field of sphere $A$ and $E_{B}$ be the electric field of sphere $B$ Then
$\frac{E_{A}}{E_{B}}=\frac{K Q_{A}}{a^{2}} \times \frac{b^{2}}{K Q_{B}}$
$\frac{E_{A}}{E_{B}}=\frac{Q_{A}}{a^{2}} \times \frac{b^{2}}{Q_{B}}$
$\frac{E_{A}}{E_{B}}=\frac{C_{A} V}{a^{2}} \times \frac{b^{2}}{C_{B} V}$
But $\frac{C_{A}}{C_{B}}=\frac{a}{b}$
$\frac{E_{A}}{E_{B}}=\frac{a V}{a^{2}} \times \frac{b^{2}}{b V}$
$\frac{E_{A}}{E_{B}}=\frac{b}{a}$
19. Ans: A) $-2 \sqrt{3} \mathrm{~J}$

Here, $2 \mathrm{a}=20 \mathrm{~cm}=20 \times 10^{-2} \mathrm{~m}$

Charge $q= \pm 3 \times 10-3 \mathrm{C}, \quad \theta=60^{\circ}$ and torque $=6 \mathrm{Nm}$
$\tau=\mathrm{PE} \operatorname{Sin} \theta$
$\mathrm{E}=\frac{\tau}{P \sin \theta}=\frac{\tau}{2 q a \sin \theta}$
$\mathrm{E}=\frac{6}{3 \times 10^{-3} \times 20 \times 10^{-2} \times \sin \sin 60^{0}}=\frac{10^{5}}{5 \sqrt{3}} \mathrm{~N} / \mathrm{C}$
Potential energy of dipole
$U=-p E \cos \theta=-2 q a E \cos \theta$
$U=-3 \times 10^{-3} \times 20 \times 10^{-3} \times \frac{10^{5}}{5 \sqrt{3}} \times \cos 60^{0}$
$\mathrm{U}=-2 \sqrt{3} \mathrm{~J}$
20. Ans : C) $1.5 \times 10^{19} \mathrm{~ms}^{-2}$
$\mathrm{F}=\mathrm{ma}$
or a a $\frac{1}{m}$
Therefore $\frac{a_{p}}{a_{e}}=\frac{m_{e}}{m_{p}}$
$\mathrm{a}_{\mathrm{p}}=\frac{a_{e} m_{e}}{m_{p}}=\frac{2.5 \times 10^{22} \times 9.1 \times 10^{-31}}{1.67 \times 10^{-27}}$
$\mathrm{a}_{\mathrm{p}}=13.6 \times 10^{18} \approx 1.5 \times 10^{19} \mathrm{~ms}^{-2}$
21. Ans: B) $\mathbf{1 : 3}$

According to law of conservation of angular momentum
Angular momentum of perigee $=$ Angular momentum of apogee
$\operatorname{mVPr}_{P}=$ mVArA $_{A}$
$\frac{v_{A}}{v_{P}}=\frac{r_{P}}{r_{A}}=\frac{2 R_{E}}{6 R_{E}}=\frac{1}{3}$

## 22. Ans : B) 0.64 cm

In equilibrium, weight of the suspended body $=$ stretching string
Therefore : At the earths surface, $\mathrm{mg}=\mathrm{kx}$
At height $\mathrm{h}, \mathrm{mg}^{\prime}=\mathrm{kx}{ }^{\prime}$
$\frac{g^{\prime}}{g}=\frac{x^{\prime}}{x}=\frac{R_{E}^{2}}{\left(R_{E}+h\right)^{2}}=\frac{(6400)^{2}}{(6400+1600)^{2}}=\frac{(6400)^{2}}{(8000)^{2}}=\frac{16}{25}$
$x^{\prime}=\frac{16}{25} x=\frac{16}{25} x 1=0.64 \mathrm{~cm}$
23. Ans: D) $-4 \sqrt{2} \frac{G m}{l}$


From figure

$$
\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\mathrm{OD}=\frac{\sqrt{l^{2}+l^{2}}}{2}=\frac{l \sqrt{2}}{2}=\frac{l}{\sqrt{2}}
$$

Potential at center $O$ due to given mass configuration is

$$
\begin{aligned}
& \mathrm{V}=\left(-\frac{G m}{O A}\right)+\left(-\frac{G m}{O B}\right)+\left(-\frac{G m}{O C}\right)+\left(-\frac{G m}{O D}\right) \\
& \mathrm{V}=-\frac{4 G m}{\frac{l}{\sqrt{2}}}=-4 \sqrt{2} \frac{G m}{l}
\end{aligned}
$$

## 24. Ans: C) $11.2 \mathrm{~km} \mathrm{~s}^{-1}$

The escape velocity is independent of the mass of the body
25. Ans : C) $2 \mathrm{E}_{0}$

Potential energy is $=2($ total energy $)=2 \mathrm{E}_{0}$

